a2 United States Patent

Fukuhara et al.

US009064294B2

(10) Patent No.: US 9,064,294 B2
(45) Date of Patent: Jun. 23, 2015

(54) IMAGE PROCESSING APPARATUS AND
METHOD

(71) Applicant: Sony Corporation, Tokyo (IP)

(72) Inventors: Takahiro Fukuhara, Kanagawa (IP);
Katsutoshi Ando, Kanagawa (JP)

(73) Assignee: SONY CORPORATION, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 192 days.

(21) Appl. No.: 13/693,571

(22) Filed: Dec. 4,2012

(65) Prior Publication Data
US 2013/0163889 Al Jun. 27,2013

(30) Foreign Application Priority Data
Dec.7,2011 (JP) oo 2011-267561

(51) Imt.ClL

GO6K 9/36 (2006.01)

GO6T 9/00 (2006.01)
(52) US.CL

CPC it GO06T 9/00 (2013.01)
(58) Field of Classification Search

USPC ot 382/232, 233, 236

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

7,590,294 B2* 9/2009 Fukuharaetal 382/232

FOREIGN PATENT DOCUMENTS
WO WO 2007/058296 5/2007
OTHER PUBLICATIONS

SMPTE Standard, Material Exchange Format (MXF)—File Format
Specification, SMPTE 377-1-2009, May 4, 2009, pp. 1-181.
SMPTE Standard for Television—Material Exchange Format
(MXF)—Operational pattern 1A (Single Item, Single Package)
SMPTE 378M-2004, Sep. 22, 2004, pp. 1-10.

SMPTE Standard for Television—Material Exchange Format
(MXF)—MXF Constrained Generic Container, SMPTE ST 379-
2:2010, Feb. 23, 2010, pp. 1-20.

SMPTE Standard, Material Exchange Format—Mapping JPEG
2000 Codestreams into the MXF Generic Container, SMPTE 422M-
2006, Aug. 28, 2006, pp. 1-14.

* cited by examiner

Primary Examiner — Duy M Dang
(74) Attorney, Agent, or Firm — Frommer Lawrence &
Haug LLP; William S. Frommer; Ellen Marcie Emas

(57) ABSTRACT

An image processing apparatus processes encoded data
obtained by encoding image data for each of line blocks
obtained by dividing an image. The image processing appa-
ratus includes: a body-partition generating unit configured to
generate body partitions of a file with a predetermined format
for each piece of encoded data for one of the line blocks, the
body partitions containing the encoded data; and a partition
merging unit configured to merge the body partitions gener-
ated by the body-partition generating unit, a header partition
containing header information, and a footer partition contain-
ing footer information to thereby generate the file.

24 Claims, 32 Drawing Sheets

US 9,064,294 B2

Sheet 1 of 32

Jun. 23, 2015

U.S. Patent

L
SN

o3

y

i
i

H
H
¥

e T

Zyl

ol

HOLHENT

) 2

B N S).,.......:x!zzxr».

5 s

NO!EDYd

VAYOY LGN

FYIH

T SN S

LINCONIL
_?xu%'

Figy
~4 Y

&m zmw

13 ui

r_

ﬁc,mr .tm:w

ﬂ/./v

b
Rt

LY H
h?umﬁo ”

,.? LINA ONLLVYINTD

LIND ONIVHENGD
ST NG Y OV aH

,w,,%c dog.

HIQOONT HO0TE-3ND

m

G340

OILYT Y0
LYEREA N

uzﬁ ﬁm ,.M

3)

ANFFESY

\.\\

U.S. Patent Jun. 23,2015 Sheet 2 of 32 US 9,064,294 B2

FIG. 2

1920

US 9,064,294 B2

SNFEFLTH
TOILAEA

ONIALH
TWINOZY

HILHS SIEATYNY
TWOLYEA OF 10N
SONANGES YIVE 2OV

I TIITITd

A W INOZROH)

>

HZ1 S SEYIHOM

Sheet 3 of 32

e s i i,

T G T

NG rcapﬁﬁum WOHNEA

HOA G801 M40 3N T ANCZROH)

A3 QYA

000 0 0 0 8 06

7 AN JZRHOH)

-

Jun. 23, 2015

U.S. Patent

SOOI
0
ITTTTTTT
Pl
WOTHaA Mo
AL S8YeMOT

£ Ol

US 9,064,294 B2

Sheet 4 of 32

Jun. 23, 2015

U.S. Patent

SN0 INENDANGS ADNE
SN0 ININODIROD ADNEN

SI0L00 -
INNOROD 1
>f ?dﬁammﬂw%y‘wﬁu\w “

540400
EANO0 -y

SLNdNt -

.<A 8 ”, mi.&t IS e Gow

b Old

US 9,064,294 B2

Sheet 5 of 32

Jun. 23, 2015

U.S. Patent

CB

m ,MO%M)Q
FHAHOH -

Amzomﬁwo

D30T

m@wmrummmmﬁmdm
SiNdLIN0 G3Y mmﬁﬁziwyw

US 9,064,294 B2

Sheet 6 of 32

Jun. 23, 2015

U.S. Patent

ACNINUZHI HOMH @ AONSNO3YI M0 B 1SR

J0IG SISATYNY 1Y
m_umﬁﬁy SINAZ I
SISIHINTYY NEUIBANN

(N (iR -

ONNGY ONOJAES 4

31 SISTHINAS

[P 4

gare
ﬁ)

Al et

,.(T\.

e T T AR AR] e R

FHINAG 4040 (91 ¥ MRS SISATYNY 40 WA0M0
it o neta { INNSINIAHATS NIRON

W34408 LNENEIONY T INSIDI4300

AN .ﬁnw?f gw,mm,

ANTIOHESE00
O" ONCOES

o
V

g old

U.S. Patent

FIG. 7A

FIG. 7B

FIG. 7C

Jun. 23, 2015

Sheet 7 of 32

\NT 4L

\LL\\‘gX Hu\ H§

*!‘sf -1

TUNE o

1LINE

v.\

A

W=
&

}

r

tH— 3

’kf‘v? 1/ g

WT 2 RS

]

OUT-1E

US 9,064,294 B2

T LINES

4 LINES

4% UNES

A4

£3
3 4 LINES

& T2
SESxEl s)
WT~t s o

3LINES
2 LINES
25 LINES
2 LINES
2 UINES
3 UNES
7 UINES
2% LINES

ZUNES
72 LINES

e

1 LINE

;

s S0 I LY

s 4 LINES
\

40 LINES

4 LINES

g LINES

US 9,064,294 B2

:
o , SR AVTHEG :
B v XY ¥ e : 39
; ST £ o FGGIND 35V
G i SHING L-I0 §

; na :
‘‘‘‘‘ € leftad L AHOJSNYHL

il
~<-:3*
Fad
X
G
-t

Sheet 8 of 32

Jun. 23, 2015

U.S. Patent

LA LA LA L LA LAY S EAN

A v & S - ONIGOO30 AJOHING

1¥d

(AN A S S T B | INOIGSINSNYML

ONIIODNT AdOMINT

O R

WNHDHONYL
LT TZAYM

<t
=¥
&
X
o
<
T

: : : N F0WY
T = o NN 3OV

US 9,064,294 B2

Sheet 9 of 32

Jun. 23, 2015

U.S. Patent

yaed JBURIUD BIEpeien HI8
LOKEA 481004 80L8S5Y Eelarciey UOHGIB Y BpasH
J8je0 8t Apog epd JepEsy 94

6 Oid

US 9,064,294 B2

Sheet 10 of 32

Jun. 23, 2015

U.S. Patent

reuondo) {puogdol {(Buondo
| e epy] | sigE] OB
WOpUEM Xapuy JspEsn UDHB S 181004
B D01 'Oid
GONIB A 19100 4
freuondo; {muogdol {puogdo)
$3Ed JBUEIICT 208 | giRneialy A
LORNB DON JOUFSST X8pu JBpBaH udlEd Apog
4 g0 D
LoRILE ApOE h &
{|puoide) {puondo) freuondo)
i j:iticitlivg alqe] BIRDEION B uj
UOLE] 1XEN SoLRsST YapUL J8pEsk LORNE Japeai HiS

Hofed JepRay

V0l 9Iid

US 9,064,294 B2

Sheet 11 of 32

Jun. 23, 2015

U.S. Patent

L AH mmwr NG NOUMOA 1 G30M00E
SIHDOTE SNITENO ¥

CHY IV

\\
A A o
wE\/E‘J \»}-J\ \llllllll\\\/lllllllll\’a M
Tidemreed T M ,.thf s TiM
Gzl |)
TR CERE e e e i T
epl ?8... punog NN BiB(] wnag
Dunag i
o ,\% GO NN B e
.\ < YAV WISAS, ;ff/,
B 4 N
ETEE SIS ISR | SR ieuaan S OemeEl A BN RN e
zie | oeer | oom punag | puncs | punog §i | ainoid 2Nl | LEBAS | LI0IBAS | LSS
ey eer) WBY punog ; GIOY DI W e wasky
SINIWITE 4O HIOMO ONY MHEMAN 3YS I aavd .
HINIVINGD CRENTD ANY NESIWIOVH INZINGO TY BEN0B 4 JUBIIOD
dl dD BT LB L 4D 194D 164D w0 84D D Ll D
pue ausnbag HBIS souanbag

US 9,064,294 B2

Sheet 12 of 32

Jun. 23, 2015

U.S. Patent

WA Al TIPS L PR}t c
A e A =
: =
=z
=
MM EjBg AUBLog
= 2DUes8s
S Bi2[] JBUEID)
= SOUEEST
L \ |
sBevoed ey afiewoed sy stiexoed sy sbevoed)
BIASOURIBIEY | | BIA B0UBIGISY BiA SOUMIBON 21 B0LAIDIBY
,/v m / A
louenbeg L PEL L
dyn Bun0g ” dioy a2in0s a0usnbsg punog
3
.w 3
diny 301108 b dig e bag b JEIL L
/ ot D m:(M neg pouendag BI04
HBUOGLICT APOIBL aouanbag b , oL
HUBLOCINT) BpOIBLULY @OUATDEG 1 andosi]
o abeyosd
Zi Ol o e

US 9,064,294 B2

Sheet 13 of 32

Jun. 23, 2015

U.S. Patent

- ey | EpEpRlep B

v XBRUY T el iBpRaH UOHHE 4 J81004
JBURIUOD oy Aige] X8 2IEPRIBI $IB
golinsed HOBRIES ADog XBpU: usHiLed Agog 1PDEBH voniE g Apog

gel o4

2iEDEIoN AIE
Japesy UoE JepRal
e
{ ubiyed JepreH

vel old

U.S. Patent Jun. 23,2015 Sheet 14 of 32 US 9,064,294 B2

FiG. 14
{START OF ENCODING PROCESSING
3 5101
|| PERFORM ENCODING FOR ONE LINE BLOCK [P
DETECT DATA LENGTH (L OF CODE ¢5102
STREAM (V) FOR LINE BLOCK
S R— 5103
L GENERATE BODY PARTITIONS |
. ¥ 5104
| GENERATE HEADER PARTITION V
§ GENERATE FQOTER PARTITION 1
¥ .
MERGE HEADER PARTITION, BODY 3106
PARTITIONS, AND FOOTER PARTITION IN
THAT ORDER TO GENERATE MXF FILE
¥ 5107
MO ALL LINE BLOCKS PROCESSED? -
YES

-

O END D)

U.S. Patent Jun. 23,2015 Sheet 15 of 32 US 9,064,294 B2
FIG. 15
(START OF LINE-BLOCK ENCODING PROCESSING)
Y e 5121
[ORTAIN JMAGE DATA FOR ONE LINE BLOCK P
o
PERFORM VERTICAL ANALYSIS FILTERING P
. , e 8123
TPEREORM HORIZONTAL ANALYSIS FILTERING
- . G124
NO/ HAS FILTERING BEEN PERFORMED UPTO
S LAST DECOMPOSITION LEVEL? /
VES
REARRANGE COEFHICENTS INORDEROF |¢8140
LOW FREQUENCY TO HIGH FREQUENCY
¥ 818
_l QUANTIZE COEFEICIENTS 2
¥ e
PERFORM ENTROPY ENCODING 5127
ON COEFFICIENTS |
K2

CRETURID

U.S. Patent Jun. 23,2015 Sheet 16 of 32 US 9,064,294 B2

FIG. 16

” START OF BODY-PARTITION
__ GENERATION PROCESSING

GENERATE BODY PARTITION CONTAINING 514!
KLV OF ESSENCE CONTAINER DATA
v
GENERATE BODY PARTITION CONTAINING
INDEX TABLE SEGMENT AND ADD BODY PARTITION
v
GENERATE BODY PARTITION CONTAINING
HEADER METADATA AND ADD BODY PARTITION

(__RETURN)

5143

W

FIG. 17

/“START OF FOOTER-PARTITION "\
_GENERATION PROCESSING _/

Y ~S181
| CENERATE FOOTER PARTITION PACK ¥

v 5162
CENERATE HEADER METADATA AND ADD T

v 8163
[GgNER}‘%YE INDEX TABLE SEGMENT AND ADD §’¥'E’ ‘

RETURN

US 9,064,294 B2

Sheet 17 of 32

Jun. 23, 2015

U.S. Patent

e [ehiciu el iR BRI BIEDRISA HIE
xami 18pESL XEPU BOUSS5H JBUERH NOIIMES JBEES)
uaniedg HoaeH e HOHIE A
19004 Apog DUy %cr 151 Jopesy
g2y SiepRIon tinzhe : aige Felviciiivg! 2l pRIeN NOB
Xapul iBpESH : i8pRal W ¥8pu] JOPBGH UOHRIIE JOPREH
geiiye Ui %a : 24 HeA Lo
; 2 : SaL
8004 o Apog pig W Qom %N % 18] 1apEoy
\\._\ o e ¢ . "
e~ 0078 3T vel Ol

U.S. Patent Jun. 23,2015 Sheet 18 of 32 US 9,064,294 B2

FIG. 19

{~ START OF BODY-PARTITION
__GENERATION PROCESSING
v s
GENERATE BODY PARTITION CONTAINING 518
KLY OF ESSENCE CONTAINER DATA
y o
GENERATE BODY PARTITION CONTAINING 159182
INDEX TABLE SEGMENT AND ADD BODY PARTITION
. Y 5183
| GENERATE HEADER METADATA P

{_ RETURN

FIG. 20
{ START OF FOGTER@ART{T;QM)
__GENERATION PROCESSING
¥ 8504
[GENERATE FOOTER PARTITION PACK P
| ADD HEADER METADATA OF BODY PARTITION |
y 5203

Y

IGENERATE INDEX TABLE SEGMENT AND ADDITY

US 9,064,294 B2

Sheet 19 of 32

Jun. 23, 2015

U.S. Patent

alge i BI2PRISR BUENOT BIRPRIGN 0B
XapL BPESH] BOUBEST 1BDEBH UONLE Jeppan
OB Uongey UORILRA gic Ol
BI004 ADCH 151 JBpBSH
{1 M0078 3
age] elEpeIBy o eEpelaw B8} SBURIIOT IR ORI W8
X8pu BpERH i iepeey xapu] aoUSSsY BpBaL U0IILIES JBpRal
FnYICE e, %M, R G0N UONILIEA
21004 L Apog pig pog puz Apog 183 BpEeH
s e i o ;)
LINO 43100718 N vic Ol

U.S. Patent Jun. 23,2015 Sheet 20 of 32 US 9,064,294 B2

FIG. 22

C START OF BODY-PARTITION
GENERATION PROCESSING

GENERATE BODY PARTITION CONTAINING |52
KLV OF ESSENCE CONTAINER DATA

: IR
T CENERATE INDEX TABLE SEGMENT F
_ v §223
[GENERATE HEADER WETADATA |
“RETURN

FIG. 23

START OF FOOTER PARTITION
GENERATION PROCESSING
.f Y —T7E
[GENERATE FOOTER PARTITION PACK

y 5242
[__ADD HEADER METADATA OF BODY PARTITION

. v _
l ADD INDEX TABLE SEGMENT OF BODY PARTITION }’

¥
RETURN D)

5243

US 9,064,294 B2

Sheet 21 of 32

Jun. 23, 2015

U.S. Patent

aqe]

RIEpEISYY
19pEeH

uaged
191004

NSOG8 3N

i o

g

EpeN
Bpesi Xapi]

JEUBHIDN
apiiess3

EYEDRION
BpEaL

Lone

LanieY
Apag pig

Apog puz

YOHHIE

Apog st

unnneg
JapBSL

e Old

U.S. Patent

Jun. 23,2015 Sheet 22 of 32 US 9,064,294 B2
FIG. 25
(START OF ENCODING PROCESSING)
, - S : e 530
|| PERFORM ENCODING FOR ONE LINE BLOCK |
et ‘& v - N TEty
DETECT DATA LENGTH {L) OF CODE e
STREAM (V) ':'\)Fi LINE BLOCK
| 5303
| GENERATE Bom PARTITIONS Is
v 5304
< NO /N1 LINE BLOCKS PROCESSED? ¥
YES
- S308
|| PERFORM ENCODING FOR ONE LINE BLOCK | ¥
¥

DETECT DATA LENGTH (L) OF CODE 5308
STREAM (V) FOR LINE BLOCK

] v 8307

1 GENERATE BODY PARTITIONS ¥
v 5308

1 GENERATE HEADER PARTITION ¥
¥ 52309

| GENERATE FOOTER PARTITION P

¥

WMERGE HEADER PARTITION, BODY £S310

PARTITIONS, AND FOOTER PARTITION IN
THAT ORDER TO GENERATE MXF FILE

NG/ v D3 H

\ (A\ i ;EN§ B {M}PK pQ\J\I 8{)\:?\?)}
YES

Cae

U.S. Patent Jun. 23,2015 Sheet 23 of 32 US 9,064,294 B2

FIG. 26

(S‘TA_R?__QFfDQTER»PARﬂ?iOﬁ)
___GENERATION PROCESSING

Y IR 2
|___GENERATE FOOTER PARTITION PACK |
¥ 8332

CENERATE HEADER METADATA OF RODY F/
PARTITION AND ADD HEADER METADATA

I _ $333
CENERATE WNDEX TABLE SEGNENTS
FOR RESPECTIVE LINE BLOCKS
AND ADD INGEX TABLE SEGMENTS

US 9,064,294 B2

Sheet 24 of 32

Jun. 23, 2015

U.S. Patent

~LATEA %ﬁ 353/

LMD
OGN YL

ww

XAy

h,;,,,,;,,==,¢5=,z,:-!=,:c«((((((<(w .

mmw

i

ONLLAAMOE]

NOLLL Y H3 1004

By

{
ymwa w&uwm

H

TR SN
HIDNITYLYE
Y3418 000

LN N Ex&

w1 INIFNGES

YL XEON

i

TTONELANO3G

AVAY LHEavE

U3 ADEA 34X

2y

wo

{1 ONiLdADE0

HHYEHE0YEH

/:«
i

1y

Le Ol

iy

U.S. Patent Jun. 23,2015 Sheet 25 of 32 US 9,064,294 B2

FIG. 28

(START OF DECODING PROCESSING

HEADER PARTITION, BODY PARTITIONS,

DECRYPT MXF FILE TO SEPARATE 5401

AND FQOTER PARTITION

E

_ ¥ $402
DECRYPT HEADER PARTITION 1

v 9408

s

DECRYPT ’"OGWR PARTITION e

i

SECRYPT 5OV PARTTTIONG i

\?’ 5‘6‘165

EXTRACT CODE STREAM (V) FOR
ONE LINE BLOCK

¥ SA06

[T PERFORM DECODING FOR ONE LINE BLOCK (I

v

GUTPUT DECODED IMAGE DATA 5407
FOR ONE LINE BLOC

¥ 5408

NG/
Y

ALL LINE BLOCKS PROCESSED? 5~

“ YES

U.S. Patent Jun. 23,2015 Sheet 26 of 32 US 9,064,294 B2

G, 29

(’ START OF FOOTER-PARTITION ™
_DECRYPTION PROCESSING)

y 5421
| _DECRYPT HEADER METADATA

v 5422
[DECRYFT INDEX TABLE SEGMENT P

i
{ RETURN)

FIG. 30

¢~ START OF BODY-PARTITION ™
_ DECRYPTION PROCESSING)

v
i DECRYPT HEADER METADATA r

v 5442
i DECRYPT INDEX TABLE SEGMENT H

¥
| DECRYPT KLV OF ESSENCE CONTAINER DATA |

<
&

U.S. Patent Jun. 23, 2015 Sheet 27 of 32

FIG. 31

US 9,064,294 B2

(START OF LINE-BLOCK DECODING PROCESSING)

oY

-)
PERFORM ENTROPY DECODING 5461
ON ENCODED DATA
) y ey ¢ $462
§ PERFORM INVERSE QUANTIZATION 1
J ¥ 5483
§ HOLD COEFFICIENT DATA b
¥ , o G464
ND COEFFICIENT DATA FOR ONE LINE
BLOCK ACCUMULATED? -
o YES
T T — 5465
| PERFORM VERTICAL SYNTHESIS FILTERING P
¥ 5 5466
[PERFORM HORIZONTAL SYNTHESIS FILTERINGF
\J’ AR
| NO HAS FILTERING BEEN PERFORMED ‘g"""o‘
UP TO LEVEL 17 /

YES
/

(_RETURN)

U.S. Patent Jun. 23,2015 Sheet 28 of 32 US 9,064,294 B2

FIG. 32

START OF BODY-PARTITION
DECRYPTION PROCESSING
T — S 5481
REFER 7O RESULT OF DECRYPTION OF |
HEADER METADATA OF FODTER PARTITION

E DECRYPT INDEX TABLE SEGMENT 1
L -$483
| DECRYPT KLV OF ESSENCE CONTAINER DATA 1

(RETURN

FIG. 33

START OF BODY-PARTITION ™
DECRYPTION PROCESSING /
¥

"REFER 10 RESULT OF DECRYPTION OF P
HEADER METADATA OF FOOTER PARTITION

TR O RESULT OF DECRYPTION GF
INDEX TABLE SEGMENT OF FOOTER PARTITION
B 550
[DECAYET KLV OF ESSENCE CONTANER DATA

U.S. Patent Jun. 23,2015 Sheet 29 of 32 US 9,064,294 B2

FIG, 34
(START OF DECODING PROCESSING)
DECRYPT MXF FILE TO SEPARATE ¢oall
HEADER PARTITION, BODY PARTITIONS,
AND FOOTER PARTITION
¥ 5522
| DECRYPT HEADER PARTITION P
: ¥ 8523
1 DECRYPT FOOTER PARTTION I
. s 5524
[DECRYPT BODY PARTITIONS F
v (8525
| EXTRACT CORE STREAM V) FOR LINE BLOCK
v 15962
|| PERFORM DECODING FOR ONE LINE BLOCK |
! $527
OUTPUT DECODED IMAGE DATA 58
FOR ONE LINE BLOCK
N ¥ ‘ 5528
MO UINE BLOCKS PROCESSED? 57
YES
} . 5529
H CRYPT :zow PARTITIONS I
5530
| EXTRACT CODE 8T @m W (V) FOR LINE BLOCK P
v ~5531
|| PERFORM DECODING FOR ONE LINE BLOCK |F
OUTFUT DECODED IMAGE DATA £5532
FOR ONE LINE BLOCK
‘if G533
MO ALL LINE BLOCKS PROCESSED? 3
YES
oD

U.S. Patent

Jun. 23, 2015

FIG.

Sheet 30 of 32

35

START OF FOOT
DECRYPTION

ERPARTITION N

PROCESSING

-

¥

DECRYPT HEADER METADATA

/

DECRYPT ALL OF IND

EX TABLE GEGMENTS

RHET

-"vvvvvvvvw\v

URN

US 9,064,294 B2

US 9,064,294 B2

Sheet 31 of 32

Jun. 23, 2015

U.S. Patent

{AONENDEN 1SIMON A A 100
A0 ANMTAND 300030 : ”
{40078 3N o QLOSSH SONYE “ ,
$76 % .wfﬁ i »QZJDQMO.M Y i
OSSN «3@ vl Zwu%

mm& HOTHM
3001 &O;mz«/
?mm .,m,.\ SINFRTR

4311V A8 4

+ZNIGOONTS

-
giomang e/
B SN

MYHL LMOCTEANT N,

\4&&3

¥

TR R T - R H 01 zm e
SIOCIE INN HONIGOOIO+NOULAT0ZM] e Y1va 0300583

40 SNIGOTEG :

O30 ANG 40 3L

S gL
................ (I AVTI0) S g

US 9,064,294 B2

Sheet 32 of 32

Jun. 23, 2015

U.S. Patent

ANIG3N
TIEVAGIIY
7r i 1L AN b
il ¥ Bt N N
. LN LND LINA LN
LN A NOLIYOINNWINOD| | 39WH0IS | | 1Adino | | indw
T 3
ol] | [!
SOVARITLN LNALNO/ LN
ol i
¥ |
L < ~
/ # & e PN \,\,
vl ,ww | i
N i N
AR NOY ndo
Py 7 ~
. 0! 20! 0l
[

Le Oid

US 9,064,294 B2

1
IMAGE PROCESSING APPARATUS AND
METHOD

BACKGROUND

The present disclosure relates to image processing appara-
tuses and image processing methods. In particular, the present
disclosure relates to an image processing apparatus and an
image processing method that are capable of reducing the
amount of delay in file transmission of content, such as image
and audio content.

Hitherto, MXF (Material exchange Format) has been avail-
able as a standard for a file format for conversion of material,
such as images and audio, into a file for transmission (e.g., see
SMPTE 377M: The MXF File Format Specification (the
overall master document), SMPTE 378M: OP-1a (the layout
options for a minimal simple MXF file), SMPTE 379M:
Generic Container (the way that essence is stored in MXF
files), and SMPTE 422M: Mapping J2K Codestreams into the
MXF Generic Container. Uncompressed video data and
audio data or video data and audio data encoded by a coding
system, such as a JPEG (Joint Photographic Experts Group)
or MPEG (Moving Picture Experts Group) coding system,
are converted (wrapped) into a file in MXF in conjunction
with metadata and the file is transmitted. Such an arrange-
ment enables data transmission between pieces of equipment
that are capable of exchanging files that comply with the
MXF standard. The arrangement, therefore, can realize data
transmission that has a high degree of freedom and that is
independent of a coding technology, thus allowing content
data to be easily transmitted between more diversified pieces
of equipment.

A method that enables encoding and decoding of an image
at higher speed has been proposed (e.g., see International
Publication Pamphlet No. WO 2007/058296 A1) as an image
encoding system. For transmission of image data, encoding
the image data can further reduce the amount of information.
For the encoding, use of the encoding system can reduce the
amount of delay in the data transmission. That s, it is possible
to further reduce a delay time taken from when image data is
obtained until encoding, transmission, decoding of the image
data, reproduction of the resulting decoded image, and
recording of the decoded image data are performed.

However, in the case of the typical MXF standard, no
consideration has been given to a low-delay encoding system
as described in International Publication Pamphlet No. WO
2007/058296 Al and it has been difficult to realize lower-
delay data transmission.

SUMMARY

Accordingly, it is desirable to realize a high degree of
freedom and a lower delay with respect to transmission of
data, such as image and audio data.

According to one embodiment of the present disclosure,
there is provided an image processing apparatus that pro-
cesses encoded data obtained by encoding image data for
each of line blocks obtained by dividing an image. The image
processing apparatus includes: a body-partition generating
unit configured to generate body partitions of a file with a
predetermined format for each piece of encoded data for one
of'the line blocks, the body partitions containing the encoded
data; and a partition merging unit configured to merge the
body partitions generated by the body-partition generating
unit, a header partition containing header information, and a
footer partition containing footer information to thereby gen-
erate the file.

10

15

20

25

30

35

40

45

50

55

60

65

2

The body-partition generating unit may generate one body
partition containing the encoded data with respect to the file
s0 as to wrap the encoded data for one line block into the file.

The body-partition generating unit may generate a body
partition containing the encoded data, a body partition con-
taining an index table segment, and a body partition contain-
ing header metadata in that order and may arrange the body
partitions in that order.

The image processing apparatus may further include a
footer-partition generating unit configured to generate the
footer partition. The body-partition generating unit may gen-
erate a body partition containing the encoded data and a body
partition containing an index table segment in that order and
may arrange the body partitions in that order, and the footer-
partition generating unit may generate a footer partition con-
taining header metadata.

The image processing apparatus may further include a
footer-partition generating unit configured to generate the
footer partition. The body-partition generating unit may gen-
erate a body partition containing the encoded data, and the
footer-partition generating unit may generate a footer parti-
tion containing header metadata and an index table segment.

The body-partition generating unit may generate body par-
titions containing the encoded data with respect to the file and
may arrange the body partitions so that the encoded data for
the line blocks is wrapped into the file.

The body-partition generating unit may generate, for each
line block, a body partition containing the encoded data, a
body partition containing an index table segment, and a body
partition containing header metadata in that order and may
arrange the body partitions in that order.

The image processing apparatus may further include a
footer-partition generating unit configured to generate the
footer partition. With respect to each line block except a last
one of the line blocks, the body-partition generating unit may
generate a body partition containing the encoded data, a body
partition containing an index table segment, and a body par-
tition containing header metadata in that order and may
arrange the body partitions in that order. With respect to the
last line block, the body-partition generating unit may gener-
ate a body partition containing the encoded data and a body
partition containing the index table segment in that order and
may arrange the body partitions in that order. The footer-
partition generating unit may generate a footer partition con-
taining header metadata of the last line block.

The image processing apparatus may further include a
footer-partition generating unit configured to generate the
footer partition. With respect to each line block except a last
one of the line blocks, the body-partition generating unit may
generate a body partition containing the encoded data, a body
partition containing an index table segment, and a body par-
tition containing header metadata in that order and may
arrange the body partitions in that order. With respect to the
last line block, the body-partition generating unit may gener-
ate a body partition containing the encoded data. The footer-
partition generating unit may generate a footer partition con-
taining header metadata and an index table segment of the last
line block.

The image processing apparatus may further include an
encoder configured to encode the image data for each line
block. The body-partition generating unit may generate the
body partitions containing encoded data obtained by encod-
ing the image data for each line block, the encoding being
performed by the encoder.

The encoder may include: a wavelet-transform unit con-
figured to perform wavelet transform on the image data for
each line block; and an entropy encoding unit configured to

US 9,064,294 B2

3

perform entropy encoding on coefficient data obtained by the
wavelet transform performed by the wavelet-transform unit.

The line block may be a pixel data group for a number of
lines that the wavelet-transform unit uses to generate coeffi-
cient data for one line of a subband of lowest-frequency
components after the wavelet transform.

The predetermined format may be an MXF according to an
SMPTE standard.

According to one embodiment of the present disclosure,
there is provided an image processing method for an image
processing apparatus that processes encoded data obtained by
encoding image data for each of line blocks obtained by
dividing an image. The image processing method includes:
causing a body-partition generating unit to generate body
partitions of a file with a predetermined format for each piece
of'encoded data for one of the line blocks, the body partitions
containing the encoded data; and causing a partition merging
unit to merge the generated body partitions, a header partition
containing header information, and a footer partition contain-
ing footer information to thereby generate the file.

According to another embodiment of the present disclo-
sure, there is provided an image processing apparatus that
processes encoded data obtained by encoding image data.
The image processing apparatus includes: a partition separat-
ing unit configured to separate the encoded data into parti-
tions including body partitions of a file in a predetermined
format, the body partitions containing the encoded data for
one of line blocks obtained by dividing an image; and a
body-partition decrypting unit configured to decrypt the body
partitions to extract the encoded data for the line block, the
body partitions being separated by the partition separating
unit.

The body-partition decrypting unit may further decrypt a
body partition containing an index table segment and a body
partition containing header metadata, the body partitions
being separated by the partition separating unit.

The image processing apparatus may further include a
decoder configured to decode the encoded data for one line
block, the encoded data being decrypted and extracted by the
body-partition decrypting unit.

The decoder may include: an entropy decoding unit con-
figured to perform entropy decoding on the encoded data to
generate coefficient data; and an inverse-wavelet-transform
unit configured to perform inverse wavelet transform on the
coefficient data generated by the decoding performed by the
entropy decoding unit.

The predetermined format may an MXF according to an
SMPTE standard.

According to another embodiment of the present disclo-
sure, there is provided an image processing method for an
image processing apparatus that processes encoded data
obtained by encoding image data. The image processing
method includes: causing a partition separating unit to sepa-
rate the encoded data into partitions including body partitions
of a file in a predetermined format, the body partitions con-
taining the encoded data for one of line blocks obtained by
dividing an image; and a body-partition decrypting unit con-
figured to decrypt the separated body partitions to extract the
encoded data for the line block.

According to one embodiment of the present disclosure,
there is provided a technology for processing encoded data
obtained by encoding image data for each of line blocks
obtained by dividing an image. Body partitions of a file with
a predetermined format are generated for each piece of
encoded data for one of the line blocks, the body partitions
containing the encoded data. Further, the generated body
partitions, a header partition containing header information,

20

25

35

40

45

4

and a footer partition containing footer information are
merged together to thereby generate the file.

According to another embodiment of the present disclo-
sure, there is provided a technology for processing encoded
data obtained by encoding image data. The encoded data is
separated into partitions including body partitions of a file in
a predetermined format, the body partitions containing the
encoded data for one of line blocks obtained by dividing an
image. Further, the separated body partitions are decrypted to
extract the encoded data for the line block.

According to the present disclosure, images can be pro-
cessed. In particular, it is possible to achieve a higher degree
of freedom and a lower delay with respect to transmission of
data, such as image and audio data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is ablock diagram illustrating a major configuration
example of an image encoding apparatus;

FIG. 2 illustrates subbands;

FIG. 3 illustrates wavelet transform;

FIG. 4 is a schematic diagram schematically illustrating
wavelet transform when a lifting technique is applied to a 5x3
filter;

FIG. 5 is a schematic diagram schematically illustrating
wavelet transform when the lifting technique is applied to the
5x3 filter;

FIG. 6 is a schematic diagram illustrating an example in
which filtering based on the lifting using the 5x3 filter is
executed up to decomposition level 2;

FIGS. 7A to 7C schematically illustrate a flow of wavelet
transform and inverse wavelet transform;

FIG. 8 schematically illustrates exemplary parallel opera-
tions of elements for encoding and decoding;

FIG. 9 illustrates an example of a basic structure of a
logical format of an MXF;

FIGS. 10A to 10C illustrate an example of a physical
structure of a logical format of the MXF;

FIG. 11 illustrates an example of the configuration of
essence container data;

FIG. 12 illustrates an example of a relationship between
header metadata and essence container data;

FIGS. 13 A to 13C illustrate an example of low-delay struc-
tures of physical formats of partitions;

FIG. 14 is a flowchart illustrating an example of a flow of
encoding processing;

FIG. 15 is a flowchart illustrating an example of a flow of
line-block encoding processing;

FIG. 16 is a flowchart illustrating an example of a flow of
body-partition generation processing;

FIG. 17 is a flowchart illustrating an example of a flow of
footer-partition generation processing;

FIGS. 18A and 18B illustrate an example of the low-delay
structure of the MXF;

FIG. 19 is a flowchart illustrating another example of the
flow of the body-partition generation processing;

FIG. 20 is a flowchart illustrating another example of the
flow of the footer-partition generation processing;

FIGS. 21A to 21B illustrate another example of the low-
delay structure of the MXF;

FIG. 22 is a flowchart illustrating yet another example of
the flow of the body-partition generation processing;

FIG. 23 is a flowchart illustrating yet another example of
the flow of the footer-partition generation processing;

FIG. 24 illustrates yet another example of the low-delay
structure of the MXF;

US 9,064,294 B2

5

FIG. 25 is a flowchart illustrating another example of the
flow of the encoding processing;

FIG. 26 is a flowchart illustrating yet another example of
the flow of the footer-partition generation processing;

FIG. 27 is a block diagram illustrating a major configura-
tion example of an image decoding apparatus;

FIG. 28 is a flowchart illustrating an example of a flow of
decoding processing;

FIG. 29 is a flowchart illustrating an example of a flow of
footer-partition decryption processing;

FIG. 30 is a flowchart illustrating an example of a flow of
body-partition decryption processing;

FIG. 31 is a flowchart illustrating an example of a flow of
line-block decoding processing;

FIG. 32 is a flowchart illustrating another example of the
flow of the body-partition decryption processing;

FIG. 33 is a flowchart illustrating yet another example of
the flow of the body-partition decryption processing;

FIG. 34 is a flowchart illustrating another example of the
flow of the decryption processing;

FIG. 35 is a flowchart illustrating another example of the
flow of the footer-partition decryption processing;

FIG. 36 is a flowchart illustrating an example of exchange
of encoded data; and

FIG. 37 is a block diagram illustrating a major configura-
tion example of a personal computer.

DETAILED DESCRIPTION OF EMBODIMENTS

Modes (herein referred to as “embodiments™) for imple-
menting the present disclosure will be described below. A
description below is given in the following order

1. First Embodiment (Image Encoding Apparatus)

2. Second Embodiment (Image Decoding Apparatus)

3. Third Embodiment (Personal Computer)

1. First Embodiment
Image Encoding Apparatus

FIG. 1is a block diagram illustrating a major configuration
example of'an image encoding apparatus. An image encoding
apparatus 100 illustrated in FIG. 1 serves as an image pro-
cessing apparatus that encodes image data, converts the
encoded data into an MXF (Material eXchange Format) file,
and outputs the MXF file.

As illustrated in FIG. 1, the image encoding apparatus 100
has a line-block encoder 101 and an MXF-file generator 102.

The line-block encoder 101 encodes input image data with
low delay. More specifically, the line-block encoder 101 per-
forms encoding for each of multiple line blocks (described
below) obtained by dividing each picture of image data of a
moving image.

The MXF-file generator 102 sequentially converts the
encoded data (a code stream) for each line block, the encoded
data being output from the line-block encoder 101, into an
MXEF file so that an increase in delay is suppressed and out-
puts the MXF file.

MXEF is a transmission file format for transmitting data of
content, such as image and audio content. For example, the
MXF is used to transmit data of digital video and audio
between pieces of equipment, such as a camcorder and an
editing apparatus used at a broadcast station and so on.

Inthe past, data of content, such as image and audio content
was exchanged between apparatuses via a tape device or the
like. However, with an improvement of the information pro-
cessing technology, those apparatuses have been connected to

10

15

20

25

30

35

40

45

50

55

60

65

6

general-purpose networks through which data has been
exchanged. As a result, data is exchanged between more
diverse apparatuses.

The MXF is a file format having a property that is similar to
a“‘container” or “wrapper” for wrapping video data and audio
datatogether with metadata. The MXF is standardized so as to
address various problems with non-professional applications
and fully supports timecode and metadata, aiming for a future
standard for professional applications.

The MXF is designed as a wide-ranging standard that has
a high degree of freedom and that is independent of any
particular video or audio compression technique (codec).
That is, the MXF enables a code stream, encoded by an
arbitrary encoding system, to be converted into a file. That is,
fora code stream based on any encoding system, the MXF can
easily realize data transmission between apparatuses that can
process an MXF file. Accordingly, the use of the MXF file
format makes it possible to easily transmit more various types
of data between more diversified apparatuses, without pre-
paring an interface adapted for the encoding system. That is,
the MXF realizes a higher degree of freedom in data trans-
mission.

Hitherto, for conversion of video data into a file by using
the MXF, the conversion has been performed using a large
data unit, such as a sequence or a picture. In such a case,
however, the conversion of encoded data into the file causes a
large amount of delay. Thus, even when encoding is per-
formed with low delay as in the encoding using the line-block
encoder 101, there has been a possibility that the conversion
into the file causes an increase in the delay time to thereby
make it difficult to realize low-delay data transmission.

Accordingly, the MXF-file generator 102 converts the
encoded data, generated by the line-block encoder 101, into a
file so that an increase in the delay time is minimized and
transmits the file.

Details of the individual units will be described below.
[Line-Block Encoder]

First, a description will be give of the line-block encoder
101. As illustrated in FIG. 1, the line-block encoder 101
includes an image-line input unit 121, an intermediate-calcu-
lation buffer 122, a line-based wavelet transform unit 123, a
coefficient rearrangement buffer 124, a coefficient rearrang-
ing unit 125, a quantizing unit 126, and an entropy encoding
unit 127.

The image-line input unit 121 receives input moving-im-
age data for each line. The image-line input unit 121 supplies
the input image data for each line to the intermediate-calcu-
lation buffer 122, which holds the image data.

The line-based wavelet transform unit 123 performs wave-
let transform on the image data accumulated in the interme-
diate-calculation buffer 122. That is, the line-based wavelet
transform unit 123 reads the image data from the intermedi-
ate-calculation buffer 122, performs filter processing using
analysis filters to generate data of coefficients of low-fre-
quency components and high-frequency components, and
stores the generated coefficient data in the intermediate-cal-
culation buffer 122. The line-based wavelet transform unit
123 has ahorizontal analysis filter and a vertical analysis filter
and performs analysis filter processing on a group of image
data in both the horizontal direction and vertical direction of
a screen. The line-based wavelet transform unit 123 re-reads
the low-frequency-component coefficient data stored in the
intermediate-calculation buffer 122 and performs filter pro-
cessing on the read coefficient data by using the analysis
filters to thereby further generate data of coefficients of high-

US 9,064,294 B2

7

frequency components and low-frequency components. The
generated coefficient data is stored in the intermediate-calcu-
lation buffer 122.

The line-based wavelet transform unit 123 recursively
repeats the processing on low-frequency components. When
the decomposition level reaches a predetermined level, the
line-based wavelet transform unit 123 reads the coefficient
data from the intermediate-calculation buffer 122 and writes
the read coefficient data to the coefficient rearrangement
buffer 124.

The coefficient rearranging unit 125 reads the coefficient
data, written to the coefficient rearrangement buffer 124, in a
predetermined order and supplies the read coefficient data to
the quantizing unit 126. The quantizing unit 126 quantizes the
supplied coefficient data and supplies the resulting coefficient
data to the entropy encoding unit 127.

The entropy encoding unit 127 encodes the supplied coet-
ficient data by using a predetermined entropy coding system,
such as Huftman coding or arithmetic coding. The entropy
encoding unit 127 outputs the generated encoded data (a code
stream) to the MXF-file generator 102.

[Wavelet Transform|

Processing performed by the line-based wavelet transform
unit 123 will be described in more detail. Wavelet transform
will be briefly described first.

As schematically illustrated in FIG. 2, in wavelet transform
performed on the image data, processing for decomposing
image data into high-spatial-frequency bands and low-spa-
tial-frequency bands is recursively repeated on low-spatial-
frequency band data resulting from the decomposition. Such
processing is performed to thereby concentrate data in a low-
spatial-frequency band into a smaller region, thus making it
possible to perform efficient compression coding.

FIG. 2 illustrates subbands generated when an image with
a horizontal width of 1920 pixels is wavelet-decomposed four
times (i.e., up to decomposition level 4). In FIG. 2, character
“H” represents high-frequency components and “L” repre-
sents low-frequency components. In the order of “L” and
“H”, the front side indicates a band resulting from horizontal
decomposition and the rear side indicates a band resulting
from vertical decomposition. Numbers preceding “L” and
“H” represent decomposition levels in the corresponding
regions. The lowest-frequency band is 4LL.

As illustrated in FIG. 3, when an input image correspond-
ing to N lines is accumulated, the line-based wavelet trans-
form unit 123 executes vertical filtering for decomposing a
group of coefficients, arranged in the vertical direction, into
high-frequency components and low-frequency components.
This vertical filtering is executed while being shifted from the
left end to the right end of the screen, so that a group of
horizontally arranged coefficients of the high-frequency
components and the low-frequency components are gener-
ated.

The line-based wavelet transform unit 123 then executes
horizontal filtering on the components arranged in the hori-
zontal direction. As a result, two-dimensional subbands (L.L,
HL, LH, and HH components) are generated. The line-based
wavelet transform unit 123 continues the above-described
operation up to the bottom portion of the screen to thereby
generate single-decomposition wavelet transform coeffi-
cients (1LL, 1HL, 1LH, and 1HH).

A method using a 5x3 filter will be described next as a
specific example of the wavelet transform. The method using
a 5x3 filter is also employed in the JPEG 2000 standard
described above in the related art and is advantageous in that
wavelet transform can be performed with a smaller number of
filter taps.

10

20

25

30

40

45

8

An impulse response (Z transform representation) of the
5x3 filter is constituted by a low-pass filter H,(z) and a high-
pass filter H,(z), as noted in equations (1) and (2) below.
Equations (3) and (4) show that the low-pass filter H,(z) has
five taps and the high-pass filter H,(z) has three taps.

Hy@)=(-1+2z" 46224223 -274)/8 1)

H\@)=(-1+2"1-z2)2)

According to equations (1) and (2), coefficients of low-
frequency components and high-frequency components can
be directly determined. In this case, use of a lifting technique
makes it possible to reduce the amount of calculation in the
filter processing. Processing at the analysis filter for perform-
ing wavelet transform when the lifting technique is applied to
a 5x3 filter will be briefly described with reference to FIG. 4.

In FIG. 4, the top portion, the middle portion, and the
bottom portion indicate a pixel row of an input image, high-
frequency-component outputs, and low-frequency-compo-
nent outputs, respectively. The top portion may indicate coef-
ficients obtained by the above-described filter processing,
instead of the pixel row of an input image. In this case, the top
portion indicates a pixel row of an input image, solid squares
indicate even-numbered pixels or lines (starting at the zeroth
pixel or line), and solid circles indicate odd-numbered pixels
or lines.

First, at a first stage, high-frequency-component coeffi-
cients d,! are generated from the input pixel row in accor-
dance with equation (3):

1-70 0, 0
d;=d; Y25 +84,,")

3

Next, at a second stage, the generated high-frequency com-
ponent coefficients and the odd-numbered pixels of the input
image are used to generate low-frequency-component coef-
ficients s," in accordance with equation (4).

st=s+va(d, t+d}

Q)

At the analysis filter, the filter processing is performed to
decompose the pixel data of the input image into low-fre-
quency components and high-frequency components, as
described above.

Processing at a synthesis filter for performing inverse
wavelet transform for restoring the coefficients generated by
the wavelet transform will be briefly described with reference
to FIG. 5. FIG. 5 corresponds to FIG. 4 described above and
illustrates an example in which a 5x3 filter is used and the
lifting technique is applied. In FIG. 5, the top portion indi-
cates input coefficients generated by the wavelet transform,
solid circles indicate coefficients of high-frequency compo-
nents, and solid squares indicate coefficients of low-fre-
quency components.

First, at a first stage, odd-numbered coeflicients s,° (start-
ing at the zeroth coefficient) are generated from the input
low-frequency-component and high-frequency-component
coefficients in accordance with equation (5):

s0=s =Va(d,_ " +d))]

Next, at a second stage, even-numbered coefficients d,° are
generated from the even-numbered coefficients s,° generated
atthe first stage described above and the input high-frequency
component coefficients d,' in accordance with equation (6):

d0=d' (s 0+s:,1°)

(6

At the synthesis filter, the filter processing is performed to
combine the low-frequency-component coefficients and the
high-frequency-component coefficients, as described above,
to perform inverse wavelet transform.

US 9,064,294 B2

9

The method of the wavelet transform will be further
described. FIG. 6 illustrates an example in which the filter
processing based on the lifting using the 5x3 filter described
above with reference to FIG. 4 is executed up to decomposi-
tion level 2. A portion denoted as “analysis filter” at the left
side in FIG. 6 represents a filter of the line-based wavelet
transform unit 123. The portion denoted as “synthesis filter”
at the right side in FIG. 6 represents a filter of an inverse-
wavelet-transform unit corresponding to the line-based wave-
let transform unit 123. FIG. 6 illustrates only vertical filter
processing.

The leftmost column in FIG. 6 represents pixel data to be
wavelet-transformed. The first to third columns from the left
end represent analysis filter processing (vertical filter pro-
cessing) for decomposition level 1. The second column from
the left end represents high-frequency-component outputs of
the analysis filter processing and the third column from the
left end represents low-frequency-component outputs of the
analysis filter processing.

The fourth to sixth columns from the left end represent
analysis filter processing (vertical filter processing) for
decomposition level 2. The fourth column from the left end
represents low-frequency-component outputs (the third col-
umn from the left end) for decomposition level 1. That is, the
analysis filter processing is recursively repeated on the gen-
erated low-frequency components. The fifth column from the
left end represents high-frequency-component outputs of the
analysis filter processing and the sixth column from the left
end represents low-frequency-component outputs of the
analysis filter processing.

Coefficient data used for analysis filter processing at a next
level is stored in the intermediate-calculation buffer 122. In
the case of the example illustrated in FIG. 6, the coefficient
data (surrounded by dotted lines) in the third and fourth
columns from the left end is stored in the intermediate-cal-
culation buffer 122.

Coefficient data that is not used for the analysis filter pro-
cessing at the next level is stored in the coefficient rearrange-
ment buffer 124. In the case of the example illustrated in FIG.
6, the coefficient data (surrounded by dashed-dotted lines) in
the second, fifth, and sixth columns from the left end is stored
in the coefficient rearrangement bufter 124.

The coefficient data that is stored in the coefficient rear-
rangement buffer 124 as described above is quantized by the
quantizing unit 126, the resulting coefficient data is encoded
by the entropy encoding unit 127, and the resulting data is
transmitted as encoded data (a code stream). At a transmis-
sion destination of the encoded data, the encoded data is
decoded, is inverse-quantized, and is subjected to inverse
wavelet transform (synthesis filter processing).

The right side of a center vertical dotted line in FIG. 6, i.e.,
the area from the sixth column from the right end to the
rightmost column, represents the synthesis filter processing.
The fourth to sixth columns from the right end represent
synthesis filter processing (vertical filter processing) for
decomposition level 2. The sixth column from the right end
represents coefficient data to be subjected to inverse wavelet
transform. This coefficient data corresponds to the high-fre-
quency-component outputs (the fifth column from the left end
in FIG. 6) and the low-frequency-component outputs (the
sixth column from the left end in FIG. 6) for the highest
decomposition level of the analysis filter processing (i.e.,
decomposition level 2 in the example of FIG. 6). The fifth
column from the right end represents low-frequency-compo-
nent outputs of the synthesis filter processing and the fourth
column from the right end represents high-frequency-com-
ponent outputs of the synthesis filter processing.

30

40

45

50

55

10

The third column from the right end to the rightmost col-
umn represent a result of the synthesis filter processing (ver-
tical filter processing) for decomposition level 1. The squares
in the third column from the right end represent outputs
(high-frequency component outputs and low-frequency com-
ponent outputs) of the synthesis filter processing for decom-
position level 2. That is, the result of the synthesis filter
processing at a certain decomposition level is used as low-
frequency-component inputs for the synthesis filter process-
ing at the next decomposition level. The circles in the third
column from the right end represent coefficient data to be
subjected to inverse wavelet transform. This coefficient data
corresponds to the high-frequency-component outputs (the
second column from the left end in the example of FIG. 6) for
the decomposition level (decomposition level 1 in the
example of FIG. 6) higher by one level in the analysis filter
processing. The second column from the right end represents
low-frequency-component outputs of the synthesis filter pro-
cessing and the rightmost column represents high-frequency-
component outputs of the synthesis filter processing.

That is, the analysis filter processing is recursively
repeated on the generated low-frequency component outputs
and the high-frequency component outputs as low-frequency
components.

Inthis case, the order of output of the coefficient data of the
analysis filter processing and the order of use of the coeffi-
cient data of the synthesis filter processing are different from
each other, as illustrated in FIG. 6. The analysis filter gener-
ates coefficient data earlier for the components of higher
frequencies (i.e., n order of high-frequency components to
low-frequency components). The synthesis filter uses the
coefficient data earlier for the components of the lower fre-
quencies (i.e., in order of low-frequency components to high-
frequency components).

In the leftmost column to the sixth column from the leftend
in FIG. 6, C1 to C9 represent the order of output of the
coefficient data. In the sixth column from the right end to the
rightmost column in FIG. 6, C1 to C9 represent the order in
which the pieces of coefficient data are used for the synthesis
filter processing and numbers in parentheses () represent
analysis-filter-processing outputs corresponding to the pieces
of coefficient data.

For example, the coefficient data C1(5) and C2(4) in the
sixth column from the right end are subjected to the synthesis
filter processing (the vertical filter processing for decompo-
sition level 2), so that coefficient data Cf in the fitth column
from the right end is generated. The coefficient data C1(5)
corresponds to the coefficient data C5 in the sixth column
from the left end and the coefficient data C2(4) corresponds to
the coefficient data C4 in the fifth column from the left end.

Next, the coefficient data Ctf and the coefficient data C3(1)
in the third column from the right end are subjected to the
synthesis filter processing (the vertical filter processing for
decomposition level 1), so that the decoded image data for the
odd-numbered lines is generated. The coefficient data C3(1)
corresponds to the coefficient data C1 in the second column
from the left end.

That is, in a first round of the processing, the analysis filter
outputs the coefficient data in the following order.

Order of Coefficient Output by Analysis

C1—-C2—C3—-C4—C5

In turn, in the first round of the processing, the synthesis
filter uses the coefficient data in the following order.

Order of Coefficient Data Used by Synthesis Filter:

C5—C4—C1

In a second round of the processing, the analysis filter

outputs the coefficient data in the following order:

Filter:

US 9,064,294 B2

11

Order of Coefficient Data Output by Analysis Filter:
C6—C7—-C8—C9

In turn, in the second round of the processing, the synthesis
filter uses the coefficient data in the following order.

Order After Rearrangement: C9—-C8—-C2—C3

As described above, the order of generation of the coeffi-
cient data of the components and the order of use thereof are
different from each other. Thus, in order to suppress a delay-
time increase due to analysis filter processing and synthesis
filter processing as described above, the coefficient rearrang-
ing unit 125 rearranges the coefficient data stored in the
coefficient rearrangement buffer 124 in order of high-fre-
quency components to low-frequency components, by read-
ing the coefficient data in order of the coefficient data used by
the synthesis filter processing, i.e., in order of low-frequency
components to high-frequency components.

With this arrangement, the coefficient data is encoded in
order of low-frequency components to high-frequency com-
ponents and the encoded coefficient data is transmitted. That
is, the coefficient data is supplied to the transmission desti-
nation in order of low-frequency components to high-fre-
quency components. Thus, the transmission destination (the
decoding side) can perform synthesis filter processing with
lower delay, without rearranging the coefficient data.

In order to perform the analysis filter processing with lower
delay, the line-based wavelet transform unit 123 performs
analysis filter processing on image data for each data unit that
is smaller than a picture, rather than performing analysis filter
processing on the image data for each picture. That is, the
line-based wavelet transform unit 123 performs analysis filter
processing for each of line blocks obtained by dividing a
picture along a pixel line.

The term “line block™ as used herein corresponds to a
picture partial region constituted by one pixel line or multiple
pixel lines. More specifically, the line block corresponds to
image data for a number of lines used by the wavelet trans-
form to generate data for one line (i.e., coefficient data for one
line of a subband of lowest-frequency components).

That is, image data corresponding to a number of lines used
to generate data for one line of the lowest-frequency compo-
nents (i.e., coefficient data for one line of a subband of the
lowest-frequency components) is referred to as a line block
(or a precinct). The line-based wavelet transform unit 123
performs the analysis filter processing for each line block.

The line block or the precinct may also be applied to a filter
processing result. That is, the line block (or precinct) refers to,
in the original image data before the wavelet transform, a
pixel data group for a number of lines used for generating
coefficient data for one line of a subband of the lowest-
frequency components after the wavelet transform, or refers
to a coefficient data group of each subband which is obtained
by performing the wavelet transform on the pixel data group.

In the case of an example in FIG. 6, the first round of the
wavelet transform processing is performed using the pixel
data of seven lines. That is, the line-based wavelet transform
unit 123 can start the wavelet transform processing when
coefficient data for seven lines is stored in the intermediate-
calculation buffer 122. In the example illustrated in FIG. 6,
since the lifting computation is used, the analysis filter pro-
cessing can be started in practice when coefficient data for
three lines is stored.

In the second or subsequent round of the wavelet transform
processing, since the previous wavelet transform processing
results (including intermediate results) can be used, the analy-
sis filter processing can be started when pixel data for four
lines is input.

10

15

20

25

30

35

40

45

50

55

60

65

12

Thus, the line-based wavelet transform unit 123 performs
the wavelet conversion for each line block to thereby make it
possible to start the wavelet transform processing without
waiting for coefficient data for all lines to be stored in the
intermediate-calculation buffer 122. Thus, the coefficient
rearranging unit 125, the quantizing unit 126, and the entropy
encoding unit 127 can start the respective processing earlier.
That is, the line-based wavelet transform unit 123 can per-
form the wavelet transform processing with lower delay.

Thus, the line-block encoder 101 can output the encoded
data earlier. That is, the line-block encoder 101 can encode
the image data with lower delay.

As illustrated in FIG. 6, the inverse-wavelet-transform pro-
cessing is also performed for each line block so as to corre-
spond to such wavelet transform processing. Thus, the inverse
wavelet transform (decoding processing) can also be per-
formed with lower delay.

FIGS. 7A to 7C illustrate a state in which the operation
illustrated in FIG. 6 is executed on an entire image while the
wavelet transform is performed from the top to the bottom of
the screen. FIG. 7A illustrates an input image. As illustrated,
the first input In-1 is a 7-line input and the input In-2 and the
subsequent inputs are 4-line inputs. FIG. 7B illustrates a
wavelet transform result (analysis). As illustrated, in first
WT-1, one line generated at level 1 and three lines are gener-
ated atlevel 2, and in WT-2, one line is generated at level 1 and
two lines are generated at level 2.

FIG. 7C illustrates an output image at the synthesis filter at
the decoding side. As illustrated, as a result of performing
inverse wavelet transform on WT-1, one line Out-1 is
obtained, four lines are generated from WT-2, and eight lines
are generated as the last lines.

As illustrated in FIG. 8, the elements in image encoding
and decoding processing as described above can be executed
in parallel, so that the processing can be accomplished with
lower delay.

Now, calculation ofa delay time from the input of an image
until the output of the image when wavelet transform is per-
formed up to decomposition level 2 by using the 5x3 filter is
discussed with reference to FIGS. 7A to 7C. The delay time
from when image data for the first line is input until the image
data for the first line is subjected to encoding processing,
transmitted, subjected to decoding processing, and output is
given by the total of factors described below. In this case, the
delay time does not involve a delay that varies depending on
the system configuration. Examples of such a delay include a
delay in a transmission path and a delay due to actual pro-
cessing timing of each unit of the apparatus.

(1) A delay D_WT from when image data for the first line is
input until the wavelet transform WT-1 for seven lines is
completed

(2) Time D_Ord involved in rearrangement Ord-1 of coeffi-
cients for three lines

(3) Time D_EC for entropy encoding EC-1 for the three lines
(4) Time D_iEC for entropy decoding iEC-1 for the three
lines

(5) Time D_iWT for inverse wavelet transform iWT-1 for the
three lines

With reference to FIGS. 7A to 7C, an attempt is made to
calculate a delay with the above-described factors. The delay
D_WT in (1) corresponds to an amount of time for 10 lines.
When one line is processed after start of the rearrangement
Ord-1, the entropy encoding EC-1 can be started. In addition,
when two lines are processed after start of the entropy decod-
ing iEC-1, the inverse wavelet transform iWT-1 can be

US 9,064,294 B2

13

started. The entropy decoding iEC-1 can also be started when
the encoding for one line is completed in the entropy encod-
ing EC-1.

Thus, in the example in FIG. 7, the delay time from when
the image data for the first line is input until encoding pro-
cessing, the decoding processing, and so on are performed
and then the image data for the first line is output is equivalent
to 17 lines (=10+1+1+2+3).

The delay time will now be discussed in conjunction with
a more specific example. When HDTV (high definition tele-
vision) interlace video signals are input as the image data, one
frame is realized with a resolution of, for example, 1920
pixelsx1080 lines and one field is constituted by 1920 pixelsx
540 lines. Thus, when the frame frequency is assumed to be
30 Hz, 540 lines in one field are input in the period of 16.67
msec (=1 sec/60 fields).

As aresult, the delay time taken for the input of the image
data for seven lines is 0.216 msec (=16.67 msecx7/540 lines),
which is a significantly shorter time than, for example, an
update time of one field. In addition, since the number of lines
to be processed with respect to the total of the delay times of
(1) to (5) described above, the delay time is significantly
reduced. When the elements that perform the above-de-
scribed processing are implemented by hardware, the pro-
cessing time can further be reduced.

The description of the line-block encoder 101 at the front
stage of the configuration illustrated in FIG. 1 has been given
thus far. The code stream output from the entropy encoding
unit 127 in the line-block encoder 101 is sent to the MXF-file
generator 102 for each line, as described above.

[MXP File Generator]

The MXF-file generator 102 converts encoded data (a code
stream), supplied from the line-block encoder 101, into an
MXEF file for each line block. Thus, rather than converting the
encoded data (the code stream) into an MXF file for each
picture or sequence as in the related art, the MXF-file gen-
erator 102 converts the decoded file into an MXF file for each
line block. By doing so, the MXF-file generator 102 can
convert the decoded data into an MXF file with lower delay.
With this arrangement, the MXF-file generator 102 can
reduce the amount of memory for accumulating the supplied
encoded data (the code stream), to thereby make it possible to
suppress an increase in cost.

As illustrated in FIG. 1, the MXF-file generator 102
includes a header-partition generating unit 131, a body-par-
tition generating unit 132, a footer-partition generating unit
133, and a partition merging unit 134.

The header-partition generating unit 131 generates a
header partition for an MXF file. The header-partition gener-
ating unit 131 supplies the generated header partition to the
partition merging unit 134.

The body-partition generating unit 132 generates a body
partition for the MXF file. The body-partition generating unit
132 supplies the generated body partition to the partition
merging unit 134.

The footer-partition generating unit 133 generates a footer
partition for the MXF file. The footer-partition generating
unit 133 supplies the generated footer partition to the partition
merging unit 134.

The partition merging unit 134 merges the header partition
supplied from the header-partition generating unit 131, the
body partition supplied from the body-partition generating
unit 132, and the footer partition supplied from the footer-
partition generating unit 133 to generate the MXF file. The
partition merging unit 134 outputs the generated MXF file to
outside of the image encoding apparatus 100 and the MXF file
is transmitted to the transmission destination.

25

30

40

45

55

14
[MXF]

Now, the MXF will be described. FIG. 9 illustrates a basic
logical structure of an MXF format disclosed in SMPTE
377M: The MXF File Format Specification (the overall mas-
ter document). The MXF file has a logical structure in which
the first portion thereof is a file header, the center portion is a
file body, and the end portion is a file footer. The file header
can contain metadata, which is a feature of the MXF. The file
body can contain content, such as video and audio content.

In addition to a logical structure as described above, the
MXEF file is segmented by physical structures called “parti-
tions” as illustrated in FIGS. 10A to 10C. A region segmented
by the partition is referred to as a “partition pack”.

A header partition illustrated in FIG. 10A is a partition that
contains a file header and so. More specifically, the header
partition has a header partition pack and header metadata. The
header partition may optionally contain an index table seg-
ment and an essence container.

A body partition illustrated in FIG. 10B is a partition that
contains a file body and so. More specifically, the body par-
tition has a body partition pack. The body partition may
optionally contain header metadata, an index table segment,
and an essence container.

A footer partition illustrated in FIG. 10C is a partition that
contains a file footer and so. More specifically, the footer
partition has a footer partition pack. The footer partition may
optionally contain header metadata and an index table seg-
ment.

The aforementioned essence container data is defined in
SMPTE 379M: Generic Container (the way that essence is
stored in MXF files). Anupper section in FIG. 11 illustrates a
basic structure of the essence container. As illustrated in FIG.
11, the essence container data may have multiple CPs (con-
tent packages). However, the essence container has only CP0,
since the MXF-file generator 102 converts the encoded data
into an MXF file for each line block and allocates one picture
item to one line block.

The middle section in FIG. 11 illustrates items and ele-
ments in the CP. A picture item contained in the CP has a KLV
(key-length-value) structure as illustrated at the lower section
in FIG. 11. Actual image data is recorded to V (value). The
data length of V is recorded to L (length). K (key) is identi-
fication information (tag) for identifying the data.

The header-partition generating unit 131 illustrated in FIG.
1 generates a header partition as illustrated in FIG. 10A. The
body-partition generating unit 132 generates body partitions
asillustrated in FIG. 10B. The footer-partition generating unit
133 generates a footer partition as illustrated in FIG. 100.
[Body-Partition Generating Unit]

As illustrated in FIG. 1, the body-partition generating unit
132 includes a code-stream data-length detecting unit 141, an
essence-container-data generating unit 142, an index-table-
segment generating unit 143, and a header-metadata generat-
ing unit 144.

The code-stream data-length detecting unit 141 measures
the data length of a code stream for each line block (e.g.,
actual data length, such as 100 bytes or 800 bits) and supplies
the code stream for the line block to the essence-container-
data generating unit 142 in conjunction with the data length.

The essence-container-data generating unit 142 uses the
supplied code stream for the line-block and the data length to
generate essence container data. More specifically, the
essence-container-data generating unit 142 records the sup-
plied code stream for each line block to the region V in the
picture item and records the data length of the code stream to
L. The essence-container-data generating unit 142 also
records information, defined by SMPTE (Society of Motion

US 9,064,294 B2

15

Picture and Television Engineers), to K. The essence-con-
tainer-data generating unit 142 supplies the generated
essence container data to the index-table-segment generating
unit 143.

By using information of the essence container data sup-
plied from the essence-container-data generating unit 142,
the index-table-segment generating unit 143 generates an
index table segment. When multiple pieces of essence con-
tainer data are contained in the MXF file, the index table
segment is a group of data used to describe respective pieces
of position information (indexing) thereof. The index-table-
segment generating unit 143 supplies the generated index
table segment to the header-metadata generating unit 144 in
conjunction with the essence container data.

By using the information of the essence container data, the
header-metadata generating unit 144 generates header meta-
data. FIG. 12 illustrates an example of a relationship between
the header metadata and the essence container data. This
relationship is defined in SMPTE 377M: The MXF File For-
mat Specification (the overall master document). As illus-
trated in FIG. 12, in the header metadata, the essence con-
tainer data, which is a contiguous sequence of images, is
associated to indicate at what time (timecode) the essence
container data exists in a picture track in the MXF file. For
example, information regarding time-series association of
image and audio metadata as illustrated in FIG. 12 is written
in the header metadata.

The header-metadata generating unit 144 supplies the gen-
erated header metadata to the partition merging unit 134 in
conjunction with the index table segment and the essence
container data.

Since the header metadata and the index table segment are
optional, generation thereof can be omitted. The index table
segment and the essence container data output by the index-
table-segment generating unit 143 may also be supplied to the
footer-partition generating unit 133 so as to be used for gen-
eration of the footer partition.

[Low-Delay Data Structure of Partition]

During MXF-file generation as described above, the
header-partition generating unit 131, the body-partition gen-
erating unit 132, and the footer-partition generating unit 133
convert the data structures of the partitions into low-delay
data structures so that the MXF file can be transmitted with
lower delay.

FIGS. 13A to 13C illustrate an example of the low-delay
data structures of the partitions. The header-partition gener-
ating unit 131 generates a header partition having a data
structure as illustrated in FIG. 13A. That is, since the elements
other than the basic elements may be omitted, the header-
partition generating unit 131 generates a header partition
having elements constituted by a header partition pack and
header metadata (i.e., does not contain the options).

The body-partition generating unit 132 generates body
partitions having a data structure as illustrated in FIG. 13B.
That is, the body-partition generating unit 132 generates a
body partition having elements constituted by a body parti-
tion pack, which is flag information located at the front of the
body partition, and header metadata; a body partition having
elements constituted by a body partition pack and an index
table segment; and a body partition having elements consti-
tuted by a body partition pack and essence container data.

As described above, after the code stream of one line block
is written to the essence container data, the index table seg-
ment is generated based on the information of the essence
container data and the header metadata is generated. Thus, in
order to suppress a delay-time increase due to generation of

15

30

40

45

55

16

the body partitions, the body-partition generating unit 132
generates the body partitions in accordance with that order.

That is, the body-partition generating unit 132 first gener-
ates a first body partition having elements constituted by the
body partition pack and the essence container, generates a
second body partition having elements constituted by the
body partition pack and the index table segment, and then
generates a third partition having elements constituted by the
body partition pack and the header metadata. That is, a group
of'body partitions that are arranged in that order is generated.

The footer-partition generating unit 133 generates a footer
partition having a data structure as illustrated in FIG. 13C.
That is, the footer-partition generating unit 133 generates a
footer partition having elements constituted by a footer par-
tition pack, header metadata, and one or more index table
segments.

Thus, by generating an MXF file so that no redundant
element is contained in each partition so as to minimize the
number of elements in each partition (i.e., by generating an
MXEF file having a low-delay data structure), the MXF-file
generator 102 further facilitates exchange of the MXF fileand
allows data transmission of the MXF file to be performed with
lower delay.

As described above, the MXF-file generator 102 can gen-
erate an MXF file by using a method suitable for the encoded
data generated with low delay. Thus, the image encoding
apparatus 100 can achieve a higher degree of freedom and a
lower delay with respect to transmission of data, such as
image and audio data.

[Flow of Encoding Processing]

Next, a description will be given of flows of the respective
processes executed by the image encoding apparatus 100 as
described above. First, an example of the flow of encoding
processing executed by the image encoding apparatus 100
will be described with reference to a flowchart illustrated in
FIG. 14.

The image encoding apparatus 100 executes encoding pro-
cessing, illustrated in FI1G. 14, for each picture of input image
data.

Upon start of the encoding processing, the line-block
encoder 101 encodes the input image data for one line block
in step S101.

In step S102, the code-stream data-length detecting unit
141 detects the data length (L) of the code stream (V) for one
line block, the code stream (V) being generated in step S101.

In step S103, the body-partition generating unit 132 gen-
erates body partitions having a low-delay data structure, for
example, as illustrated in FIG. 13B.

In step S104, the header-partition generating unit 131 gen-
erates a header partition having a low-delay data structure, for
example, as illustrated in FIG. 13A.

In step S105, the footer-partition generating unit 133 gen-
erates a footer partition having a low-delay data structure, for
example, as illustrated in FIG. 13C.

In step S106, the partition merging unit 134 merges the
header partition, generated in the process in step S104, the
body partitions, generated in the process in step S103, and the
footer partition, generated in the process in step S105, in that
order to generate an MXF file containing a code stream for
one line block. The partition merging unit 134 outputs the
generated MXF file to outside of the image encoding appa-
ratus 100.

The MXEF file is transmitted to, for example, another appa-
ratus (e.g., an image decoding apparatus corresponding to the
image encoding apparatus 100) via an arbitrary transmission
medium, such as a wired or wireless network or an arbitrary
recording medium, such as a hard disk.

US 9,064,294 B2

17

In step S107, the partition merging unit 134 determines
whether or not all line blocks for the picture to be processed
(the picture of interest) have been processed. Upon determin-
ing that anunprocessed line bock exists, the process returns to
step S101 and the subsequent processes are repeated.

The processes in steps S101 to S107 are executed on each
line block. When it is determined in step S107 that all lines
blocks for the picture of interest have been processed, the
partition merging unit 134 ends the encoding processing.
[Flow of Line-Block Encoding Processing]

Next, an example of the flow of the line-block encoding
processing executed in step S101 in FIG. 14 will be described
with reference to a flowchart illustrated in FIG. 15.

Upon start of the line-block encoding processing, the
image-line input unit 121 obtains image data for one line
block in step S121 and accumulates the image data in the
intermediate-calculation buffer 122.

When the image data for one line block is accumulated, the
process proceeds to step S122 in which the line-based wavelet
transform unit 123 performs vertical analysis filtering, which
is analysis filter processing in the vertical direction, on the
image data for one line block. As described above, when the
vertical analysis filtering is performed using lifting computa-
tion, the line-based wavelet transform unit 123 can start the
vertical analysis filtering when the image data for three lines
is accumulated. That is, before the image data for one line
block is accumulated in the intermediate-calculation buffer
122, the line-based wavelet transform unit 123 can start the
vertical analysis filtering.

Upon completion of the vertical analysis filtering, the pro-
cess proceeds to step S123 in which the line-based wavelet
transform unit 123 performs horizontal analysis filtering,
which is analysis filter processing in the horizontal direction,
on the result of the vertical analysis filtering. The image data
resulting from the vertical analysis filtering is decomposed
into vertical low-frequency components and vertical high-
frequency components. The horizontal analysis filtering is
performed on those components, so that they are decomposed
into horizontal low-frequency components and horizontal
high-frequency components. Thus, as a result of the processes
in steps S122 and S123, four subbands are generated from the
image data.

In step S124, the line-based wavelet transform unit 123
determines whether or not the analysis filtering has been
performed up to a predetermined last decomposition level.
When it is determined that the analysis filtering has not been
performed up to the last decomposition level, the process
returns to step S122 and the subsequent processes are
repeated.

When the process returns to step S122, the line-based
wavelet transform unit 123 increases the decomposition level
by one level and executes the processes in steps S122 and
S123 (the vertical analysis filtering and the horizontal analy-
sis filtering) on coefficient data of the subband of both verti-
cal- and horizontal-low-frequency components, the subband
being included in four subbands generated by the previous
analysis filtering. As a result, the subband of both vertical-
and horizontal-low-frequency components is further decom-
posed into four subbands.

As described above, with respect to the subband of vertical
and horizontal low-frequency components obtained by the
analysis filtering, the line-based wavelet transform unit 123
recursively repeats the processes in steps S122 and S123 up to
the last decomposition level.

10

15

20

25

30

35

40

45

50

55

60

65

18

When the line-based wavelet transform unit 123 deter-
mines in step S124 that the above-described analysis filtering
has reached the last decomposition level, the process pro-
ceeds to step S125.

The line-based wavelet transform unit 123 stores, in the
coefficient rearrangement buffer 124, the subband coefficient
data output as a result of the processes in steps S122 and S123.
That is, the line-based wavelet transform unit 123 stores the
coefficient data in the coefficient rearrangement bufter 124 in
order of high-frequency components to low-frequency com-
ponents.

In step S125, the coefficient rearranging unit 125 reads the
subband coefficient data, stored in the coefficient rearrange-
ment buffer 124, in an order in which the pieces of coefficient
data are used in the synthesis filtering, i.e., in order of low-
frequency components to high-frequency components, to
thereby rearrange the coefficient data.

In step S126, the quantizing unit 126 quantizes the coeffi-
cient data in order of the coefficient data rearranged in step
S125.

In step S127, the entropy encoding unit 127 performs
entropy encoding on the coefficient data quantized in step
S126 and outputs the generated encoded data (the code
stream).

Upon completion of the process in step S127, the entropy
encoding unit 127 ends the line-block encoding processing
and the process returns to FIG. 14.

[Flow of Body-Partition Generation Processing]

Next, an example of the flow of the body-partition genera-
tion processing executed in step S103 in FIG. 14 will be
described with reference to a flowchart illustrated in FIG. 16.

Upon start of the body-partition generation processing, in
step S141, the essence-container-data generating unit 142
generates KLV of essence container data by using the
encoded data (the code stream) generated in the process in
step S101 in FIG. 14 and generates, as a first body partition, a
body partition containing the essence container data and hav-
ing a low-delay data structure, as illustrated in FIG. 13B.

In step S142, the index-table-segment generating unit 143
generates an index table segment by using information of the
essence container data generated in step S141. The index-
table-segment generating unit 143 generates a body partition
containing the generated index table segment and having a
low-delay data structure, as illustrated in FIG. 13B. Thus, the
index-table-segment generating unit 143 generates a body
partition containing the index table segment as a second body
partition subsequent to the first body partition generated in
step S141. That is, the index-table-segment generating unit
143 adds the body partition containing the index table seg-
ment to the end of the body partition containing the essence
container data.

In step S143, the header-metadata generating unit 144 gen-
erates header metadata by using the information of the
essence container data generated in step S141 and informa-
tion of the index table segment generated in step S142. The
header-metadata generating unit 144 generates a body parti-
tion containing the generated header metadata and having a
low-delay data structure, as illustrated in FIG. 13B. That is,
the header-metadata generating unit 144 generates a body
partition containing the header metadata as a third body par-
tition subsequent to the second body partition generated in
step S142. That is, the header-metadata generating unit 144
adds the body partition containing the header metadata to the
end of the body partition containing the index table segment.

US 9,064,294 B2

19

Upon generation of the three types of body partition as
described above, the header-metadata generating unit 144
ends the body-partition generation processing and the process
returns to FIG. 14.

[Flow of Footer-Partition Generation Processing]

Next, an example of the flow of the footer-partition gen-
eration processing executed in step S105 in FIG. 14 will be
described with reference to a flowchart illustrated in FIG. 17.

Upon start of the footer-partition generation processing,
the footer-partition generating unit 133 generates a footer
partition pack in step S161.

In step S162, the footer-partition generating unit 133 gen-
erates header metadata and adds the header metadata to the
end of the footer partition pack generated in step S161, as
illustrated in FIG. 13C.

In step S163, the footer-partition generating unit 133 gen-
erates an index table segment and adds the index table seg-
ment to the end of the header metadata added to the footer
partition pack in step S162, as illustrated in FIG. 13C.

Upon generation of the footer partition with the low-delay
data structure as described above, the footer-partition gener-
ating unit 133 ends the footer-partition generation processing
and the process returns to FIG. 14.

As a result of the processes as described above, the line-
block encoder 101 can generate encoded data (a code stream)
by encoding image data with low delay. The MXF-file gen-
erator 102 also can convert the encoded data (the code stream)
into an MXF file without excessively increasing the delay
time.

Accordingly, the image encoding apparatus 100 can
achieve a higher degree of freedom and a lower delay with
respect to transmission of data, such as image and audio data.
[Body Partition Omission]

FIG. 18A illustrates an example of the structure of an MXF
file in which only a code stream for only one line block exists
in the essence container data. As illustrated in this example,
the header metadata of a third body partition and first header
metadata of a subsequent footer partition are redundant.

Thus, as illustrated in FIG. 18B, the third body partition
(i.e., the body partition containing the header metadata) may
be omitted (i.e., may not be added). In other words, the last
body partition may be a second body partition (a body parti-
tion containing an index table). Instead, the information of the
header metadata that is omitted (is not added) is contained in
the header metadata contained in the footer partition.

As a result of the generation of the body partitions and the
footer partition as described above, the MXF-file generator
102 can reduce the amount of information of the MXF file.

In this case, the image encoding apparatus 100 executes the
encoding processing as in the case described above with
reference to the flowchart illustrated in FIG. 14. The line-
block encoder 101 also executes the line-block encoding pro-
cessing as in the case described above with reference to the
flowchart illustrated in FIG. 15. However, the body-partition
generation processing and the footer-partition generation
processing are executed as described below.

[Flow of Body-Partition Generation Processing]

An example of the flow of the body-partition generation
processing in this case will now be described with reference
to a flowchart illustrated in FIG. 19. This processing is pro-
cessing that is executed in step S103 in FIG. 14 and that
corresponds to the body-partition generation processing
described above with reference to the flowchart in FIG. 16.

Upon start of the body-partition generation processing,
processes in steps S181 and S182 are executed in the same
manner as the processes in steps S141 and S142 in FIG. 16.

10

15

20

25

30

35

40

45

50

55

60

65

20

That is, a body partition (a first body partition) containing
essence container data and having the low-delay data struc-
ture and a body partition (a second body partition) containing
an index table segment and having the low-delay data struc-
ture are generated as in the case illustrated in FIG. 16.

In step S183, the header-metadata generating unit 144 gen-
erates header metadata by using information of the essence
container data generated in step S181 and information of the
index table segment generated in step S182. In this case, the
header-metadata generating unit 144 ends the body-partition
generation processing without generating a body partition
containing header metadata and the process returns to FIG.
14.

That is, in this case, two types of body partition, i.e., the
first body partition and the second body partition, are gener-
ated as in the example illustrated in FIG. 18B.

[Flow of Footer-Partition Generation Processing]

Next, an example of the flow of footer-partition generation
processing in this case will be described with reference to a
flowchart illustrated in FIG. 20. This processing is processing
that is executed in step S105 in FIG. 14 and that corresponds
to the footer-partition generation processing described above
with reference to the flowchart in FIG. 17.

Upon start of the footer-partition generation processing, in
step S201, the footer-partition generating unit 133 generates
a footer partition pack as in the case in step S161.

In step S202, the footer-partition generating unit 133 adds
the header metadata of the body partition, the header meta-
data being generated in step S183 in FIG. 19, to the end of the
footer partition pack generated in step S201.

In step S203, the footer-partition generating unit 133 gen-
erates an index table segment and adds the index table seg-
ment to the end of the header metadata added to the footer
partition pack in step S202.

That is, in this case, as in the example illustrated in FIG.
18B, the footer-partition generating unit 133 generates a
footer partition (containing header metadata and an index
table segment) having a structure that is similar to the struc-
ture illustrated in FIG. 13C. However, the header metadata
contains the contents of the header metadata of the body
partition.

Upon generation of the footer partition with the low-delay
data structure as described above, the footer-partition gener-
ating unit 133 ends the footer-partition generation processing
and the process returns to FIG. 14.

As aresult of performing the processes as described above,
the MXF-file generator 102 can reduce the amount of infor-
mation ofthe MXF file, compared to the case described above
with reference to FIGS. 14 to 17.

[Body Partition Omission 2]

FIG. 21 A illustrates an example of the structure of an MXF
file in which only a code stream for one line block exists in the
essence container data. As illustrated in this example, the
footer partition contains not only the header metadata but also
the index table segment.

Thus, as illustrated in FIG. 21B, not only is the third body
partition (i.e., the partition containing the header metadata)
omitted, but also the second body partition (i.e., the body
partition containing the index table segment) may be omitted
(i.e., may not be added). That is, the body partition may be
constituted by only the first body partition (i.e., the body
partition containing the essence container data). Instead, the
pieces of information of the header metadata and the index
table segment that are omitted (are not added) are contained in
the corresponding header metadata and the index table seg-
ment contained in the footer partition.

US 9,064,294 B2

21

As a result of the generation of the body partition and the
footer partition as described above, the MXF-file generator
102 can further reduce the amount of information of the MXF
file.

In this case, the image encoding apparatus 100 executes the
encoding processing as in the case described above with
reference to the flowchart illustrated in FIG. 14. The line-
block encoder 101 also executes the line-block encoding pro-
cessing as in the case described above with reference to the
flowchart illustrated in FIG. 15. However, the body-partition
generation processing and the footer-partition generation
processing are executed as described below.

[Flow of Body-Partition Generation Processing]

An example of the flow of the body-partition generation
processing in this case will now be described with reference
to a flowchart illustrated in FIG. 22. This processing is pro-
cessing that is executed in step S103 in FIG. 14 and that
corresponds to the body-partition generation processing
described above with reference to the flowcharts in FIGS. 16
and 19.

Upon start of the body-partition generation processing, a
process in step S221 is executed as in the process in step S141
in FIG. 16.

That is, a body partition (a first body partition) containing
essence container data and having the low-delay data struc-
ture is generated as in the case illustrated in FIG. 16.

In step S222, the index-table-segment generating unit 143
generates an index table segment by using information of the
essence container data generated in step S221. In this case, the
index-table-segment generating unit 143 does not generate
any body partition containing an index table segment, and the
process proceeds to step S223.

In step S223, the header-metadata generator 144 generates
header metadata by using the information of the essence
container data generated in step S221 and the information of
the index table segment generated in step S222. In this case,
the header-metadata generating unit 144 ends the body-par-
tition generation processing without generating any body
partition containing header metadata and the process returns
to FIG. 14, as in the case in step S183.

That is, in this case, only the first body partition is gener-
ated as the body partition, as in the example illustrated in FIG.
21E.

[Flow of Footer-Partition Generation Processing]

Next, an example of the flow of footer-partition generation
processing in this case will be described with reference to a
flowchart illustrated in FIG. 23. This processing is processing
that is executed in step S105 in FIG. 14 and that corresponds
to the footer-partition generation processing described above
with reference to the flowcharts in FIGS. 17 and 20.

Upon start of the footer-partition generation processing, in
step S241, the footer-partition generating unit 133 generates
a footer partition pack as in the case in step S161.

In step S242, the footer-partition generating unit 133 adds
the header metadata of the body partition, the header meta-
data being generated in step S223 in FI1G. 22, to the end of the
footer partition pack generated in step S241.

In step S243, the footer-partition generating unit 133 adds
the index table segment of the body partition generated in step
S222 in FIG. 22 to the end of the header metadata added to the
footer partition pack in step S242.

That is, in this case, as in the example illustrated in FIG.
21B, the footer-partition generating unit 133 generates a
footer partition (containing header metadata and an index
table segment) having a structure that is similar to the struc-
ture illustrated in FIG. 13C. However, this header metadata
contains the contents of the header metadata of the body

10

15

20

25

30

35

40

45

50

55

60

65

22

partition and the index table segment contains the contents of
the index table segment of the body partition.

Upon generation of the footer partition with the low-delay
data structure as described above, the footer-partition gener-
ating unit 133 ends the footer-partition generation processing
and the process returns to FIG. 14.

As aresult of performing the processes as described above,
the MXF-file generator 102 can further reduce the amount of
information of the MXF file, compared to the case described
above with reference to FIGS. 18A to 20.

[MXF File Containing Multiple Line Blocks]

Although the above description has been given of a case in
which encoded data is converted into an MXF file for each
line block, the present technology is not limited thereto and
encoded data for multiple line blocks may also be wrapped
into a single MXF file.

The delay time, however, is proportional to the number of
line blocks. That is, for example, when encoded data for N
line blocks is wrapped into one MXF file, the delay time
thereof'is N times the delay time taken when encoded data for
one line block is wrapped into one MXF file.

When the delay time involved in the system is in a permis-
sible range, encoded data for multiple line blocks may thus be
wrapped into one MXF file, allowing for an increase in the
delay time. For example, when a large amount of delay time
is permitted or when a large amount of data can be transmitted
at once because of a large band of a transmission path for
transmission of MXF files, there are cases in which a margin
for the delay time is large and thus encoded data for multiple
line blocks can be wrapped into one MXF file.

FIG. 24 illustrates an example of such a case in which
encoded data for multiple line blocks is wrapped into one
MXEF file. As illustrated in FIG. 24, body partitions in this
case are also generated for each line block. That is, first to
third body partitions are generated for each line block and are
added to the end of a body partition generated immediately
before they were generated.

However, in this case, as illustrated in FIG. 24, the footer
partition contains index table segments corresponding to the
respective line blocks. That is, index table segments corre-
sponding to the number of line blocks of the encoded data
wrapped into the MXF file are added to the end of the header
metadata of the footer partition.

[Flow of Encoding Processing]

An example of the flow of encoding processing when
encoded data for multiple line blocks is wrapped into one
MXF file will now be described with reference to a flowchart
illustrated in FIG. 25. This processing corresponds to the
encoding processing described above with reference to the
flowchart illustrated in FIG. 14. Thus, the image encoding
apparatus 100 executes the encoding processing, illustrated in
FIG. 25, for each picture of input image data.

Itis assumed in this case that encoded data for N line blocks
(N is an integer greater than or equal to 2) is wrapped into one
MXF file.

Upon start of the encoding processing, in step S301, the
line-block encoder 101 performs line-block encoding pro-
cessing as in the case in step S101 to thereby encode the input
image data for one line block. That is, line-block encoding
processing as in the case described above with reference to
the flowchart in FIG. 15 is executed.

In step S302, as in the case in step S102, the code-stream
data-length detecting unit 141 detects the data length (L) of
the code stream (V) for one line block, the code stream (V)
being generated in the process in step S301.

In step S303, the body-partition generating unit 132
executes body-partition generation processing as in the case

US 9,064,294 B2

23

in step S103 to generate body partitions having a low-delay
data structure, for example, as illustrated in FIG. 13B. That is,
body-partition generation processing as in the case described
above with reference to the flowchart in FIG. 16 is executed.

In step S304, the partition merging unit 134 determines
whether or not image data for N-1 line blocks has been
processed. That is, when the number of line blocks of the
processed image data is smaller than or equal to N-2, the
process returns to step S301 in which the partition merging
unit 134 repeats the subsequent processes.

The processes in steps S301 to S304 are repeatedly per-
formed for each line block. When it is determined in step
S304 that image data for N-1 line blocks has been processed,
the process proceeds to step S305 in which the partition
merging unit 134 starts processing for the last Nth line block.

In step S305, the line-block encoder 101 encodes the Nth
line block as in the case in step S301. That is, line-block
encoding processing as in the case described above with
reference to the flowchart in FIG. 15 is executed.

In step S306, as in the case in step S302, with respect to the
Nth line block, the code-stream data-length detecting unit 141
detects the data length (L) of the code stream (V) for the Nth
line block, the code stream (V) being generated in the process
in step S305.

In step S307, the body-partition generating unit 132
executes body-partition generation processing on the Nth line
block as in the case in step S303 to generate body partitions
having a low-delay data structure, for example, as illustrated
in FIG. 13B. That is, body-partition generation processing as
in the case described above with reference to the flowchart in
FIG. 16 is executed.

Upon generation of the body partitions for N line blocks as
described above, the process proceeds to step S308 in which
the header-partition generating unit 131 generates a header
partition having a low-delay data structure, for example, as
illustrated in FIG. 13 A, as in the case in step S104.

In step S309, the footer-partition generating unit 133
executes footer-partition generation processing to generate a
footer partition having a low-delay data structure, for
example, as illustrated in FIG. 24.

In step S310, the partition merging unit 134 merges the
header partition, generated in the process in step S308, the
body partitions, generated in the process in step S303, the
body partitions, generated in the process in step S307, and the
footer partition, generated in the process in step S309, in that
order, as in the case in step S106, to thereby generate an MXF
file containing a code stream for the N line blocks. The par-
tition merging unit 134 outputs the generated MXF file to
outside of the image encoding apparatus 100.

The MXF file is transmitted to, for example, another appa-
ratus (e.g., an image decoding apparatus corresponding to the
image encoding apparatus 100) via an arbitrary transmission
medium, such as a wired or wireless network or an arbitrary
recording medium, such as a hard disk.

In step S311, the partition merging unit 134 determines
whether or not all line blocks for a picture to be processed (a
picture of interest) have been processed. When it is deter-
mined that an unprocessed line bock exists, the process
returns to step S301 and the subsequent processes are
repeated.

The processes in steps S301 to S311 are executed on each
line block, as appropriate. When it is determined in step S311
that all lines blocks for the picture of interest have been
processed, the partition merging unit 134 ends the encoding
processing.

10

15

20

25

30

40

45

50

55

60

24

[Flow of Footer-Partition Generation Processing]

Next, an example of the flow of the footer-partition gen-
eration processing executed in step S309 in FIG. 25 will be
described with reference to a flowchart illustrated in FIG. 26.

Upon start of the footer-partition generation processing, in
step S331, the footer-partition generating unit 133 generates
a footer partition pack as in the case in step S161.

Instep S332, as inthe case in step S162, the footer-partition
generating unit 133 generates header metadata and adds the
header metadata to the end of the footer partition pack gen-
erated in step S331, as illustrated in FIG. 24.

In step S333, the footer-partition generating unit 133 gen-
erates index table segments for the respective N line blocks
and adds the index table segments for the line blocks to the
end of the header metadata added to the footer partition pack
in step S332, as illustrated in FIG. 24.

Upon generation of the footer partition with the low-delay
data structure as described above, the footer-partition gener-
ating unit 133 ends the footer-partition generation processing
and the process returns to FIG. 25.

As aresult of performing the processes as described above,
the line-block encoder 101 can generate encoded data (a code
stream) by encoding image data with low delay. The MXF-
file generator 102 can wrap the encoded data (the code
stream) for N line blocks into one MXF file.

Accordingly, the image encoding apparatus 100 can
achieve a higher degree of freedom and a lower delay with
respect to transmission of data, such as image and audio data.
[Body Partition Omission 3]

Thus, when encoded data (a code stream) for N line blocks
is wrapped into one MXF file, the third body partition (i.e., the
body partition containing the header metadata) may also be
omitted as described above with reference to FIGS. 18A to
20.

In this case, the body-partition generating unit 132 omits
the third body partition (i.e., the body partition containing the
header metadata) of the Nth line block (i.e., the last line
block). The footer-partition generating unit 133 then adds the
omitted header metadata (i.e., the omitted header metadata of
the Nth (the last) line block) to the end of the footer partition
pack.

Thatis, in this case, the footer-partition generating unit 133
generates a footer partition (containing the header metadata
and an index table segment) having a structure that is similar
to the structure illustrated in FIG. 13C. However, this header
metadata contains the contents of the header metadata of the
body partition.

With this arrangement, the MXF-file generator 102 can
reduce the amount of information of the MXF file.

[Body Partition Omission 4]

When encoded data (a code stream) for N line blocks is
wrapped into one MXF file, not only the third body partition
(i.e., the body partition containing the header metadata) but
also the second body partition (i.e., the body partition con-
taining the index table segment) may also be omitted (i.e.,
may not be added) as described above with reference to FIGS.
21 to 23.

In this case, the body-partition generating unit 132 also
omits the second body partition (i.e., the body partition con-
taining the index table segment) and the third body partition
(i.e., the body partition containing the header metadata) of the
Nith (the last) line block. The footer-partition generating unit
133 then adds the omitted header metadata (i.e., the header
metadata of the Nth (the last) line block) to the end of the
footer partition pack and adds the omitted index table seg-
ment (i.e., the index table segment of the Nth (the last) line
block) to the header metadata.

US 9,064,294 B2

25

That is, in this case, the footer partition generator 133
generates a footer partition (containing header metadata and
index table segments) having a structure that is similar to the
structure illustrated in FIG. 13C. However, this header meta-
data contains the contents of the header metadata of the body
partition and the index table segment contains the contents of
the index table segment of the body partition.

With this arrangement, the MXF-file generator 102 can
further reduce the amount of information of the MXF file.

As in the examples described above, the MXF-file genera-
tor 102 generates various body partitions for each line block.
Thus, the MXF-file generator 102 can wrap encoded data for
an arbitrary number of line blocks into one MXF file. Thus,
the MXF-file generator 102 can wrap encoded data for a unit
smaller than a picture into one MXF file. Accordingly, the
MXF-file generator 102 can generate an MXF file without
excessively increasing the delay time (i.e., with lower delay).

Accordingly, the image encoding apparatus 100 can
achieve a higher degree of freedom and a lower delay with
respect to transmission of data, such as image and audio data.

2. Second Embodiment
Image Decoding Apparatus

FIG. 27 is a block diagram illustrating a major configura-
tion example of an image decoding apparatus. An image
decoding apparatus 400 illustrated in FIG. 27 is an image
processing apparatus corresponding to the image encoding
apparatus 100 illustrated in FIG. 1. That is, the image decod-
ing apparatus 400 obtains an MXF file generated and trans-
mitted by the image encoding apparatus 100 and correctly
decrypts the MXF file to thereby extract encoded data (a code
stream) generated by the image encoding apparatus 100. The
image decoding apparatus 400 correctly decodes the
extracted encoded data (code stream) for each line block by
using a method, which corresponds to the encoding of the
image encoding apparatus 100, to thereby generate decoded
image data for each line block and outputs the decoded image
data.

As illustrated in FIG. 27, the image decoding apparatus
400 has an MXF-file decrypter 401 and a line-block decoder
402.

The MXF-file decrypter 401 obtains an MXF file transmit-
ted from the image encoding apparatus 100, correctly
decrypts the obtained MXF file, and extracts encoded data (a
code stream) for one or more line blocks, the encoded data
being contained in the MXF file. The MXF-file decrypter 401
supplies the extracted encoded data for each line block to the
line-block decoder 402.

The line-block decoder 402 decrypts the encoded data for
each line block with low delay, the encoded data being sup-
plied from the MXF-file decrypter 401. More specifically, the
line-block decoder 402 decodes the encoded data for each
line block by using a method, which corresponds to the
encoding of the line-block encoder 101, to thereby generate
decoded image data for each line block and outputs the
decoded image data.

Details of the individual units will be described below.
[MXF-File Decrypter|

The MXF-file decrypter 401 obtains the MXF file trans-
mitted from the image encoding apparatus 100 and decrypts
the MXF file. As described above, the image encoding appa-
ratus 100 generates body partitions for each line block and
wraps encoded data for an arbitrary number of line blocks into
one MXF file. Thus, the MXF-file decrypter 401 can extract
the encoded data (the code stream) for each block from the

10

15

20

25

30

35

40

45

50

55

60

65

26
MXF file. Accordingly, the MXF-file decrypter 401 can
extract the encoded data (the code stream) with lower delay.

With this arrangement, encoded data (a code stream) that is
a smaller unit than a picture can be wrapped into an MXF file.
Thus, it is possible to reduce the amount of memory in which
the MXF file obtained by the MXF-file decrypter 401 is held
and it is also possible to suppress an increase in cost.

As illustrated in FIG. 27, the MXF-file decrypter 401
includes a partition separating unit 411, a header-partition
decrypting unit 412, abody-partition decrypting unit 413, and
a footer-partition decrypting unit 414.

The partition separating unit 411 obtains an MXF file
transmitted from the image encoding apparatus 100 and
decrypts the MXF file to separate the MXF file into the
partitions. The partition separating unit 411 supplies the sepa-
rated header partition to the header-partition decrypting unit
412. The partition separating unit 411 supplies the separated
body partitions to the body-partition decrypting unit 413. The
partition separating unit 411 further supplies the separated
footer partition to the footer-partition decrypting unit 414.

The header-partition decrypting unit 412 decrypts the sup-
plied header partition.

By using the result of header-partition decryption per-
formed by the header-partition decrypting unit 412 and the
result of the footer-partition decryption performed by the
footer-partition decrypting unit 414, the body-partition
decrypting unit 413 decrypts the supplied body partitions to
extract the encoded data (the code stream) for each line block.
The body-partition decrypting unit 413 supplies the extracted
encoded data for each line block to the line-block decoder 402
for decoding.

The footer-partition decrypting unit 414 decrypts the sup-
plied footer partition.

[Body-Partition Decrypting Unit]

As illustrated in FIG. 27, the body-partition decrypting unit
413 includes a header-metadata decrypting unit 421, an
index-table-segment decrypting unit 422, a code-stream data-
length decrypting unit 423, and an essence-container-data
decrypting unit 424.

The header-metadata decrypting unit 421 decrypts the
third body partition containing the body partition pack and
the header metadata, the third body partition being included
in the body partitions supplied from the partition separating
unit411, to thereby extract the header metadata from the body
partition. The header-metadata decrypting unit 421 supplies
the extracted header metadata to the index-table-segment
decrypting unit 422 in conjunction with the body partitions
supplied from the partition separating unit 411.

The index-table-segment decrypting unit 422 decrypts the
second body partition containing the body partition pack and
the index table segment, the second body partition being
included in the body partitions supplied from the partition
separating unit 411, to thereby extract the index table segment
from the second body partition. The index-table-segment
decrypting unit 422 supplies the extracted index table seg-
ment to the code-stream data-length decrypting unit 423 in
conjunction with the body partitions and the header metadata.

On the basis of the information contained in the body
partitions and the index table segment supplied from the
index-table-segment decrypting unit 422, the code-stream
data-length decrypting unit 423 decrypts L of the KLV struc-
ture of the essence container data, i.e., the data length of the
code stream for each line block (e.g., an actual data length,
such as 100 bytes or 800 bits). The code-stream data-length
decrypting unit 423 supplies the decrypted data length to the

US 9,064,294 B2

27

essence-container-data decrypting unit 424 in conjunction
with the body partitions, the header metadata, and the index
table segment.

On the basis of the header metadata, the index table seg-
ment, and so on, the essence-container-data decrypting unit
424 decrypts KLV of the essence container data and extracts
the encoded data for each line block from the essence con-
tainer data. The essence-container-data decrypting unit 424
supplies the extracted encoded data for each line block to the
line-block decoder 402.

[Line-Block Decoder]

The line-block decoder 402 will be described next. As
illustrated in FIG. 27, the line-block decoder 402 includes an
entropy decoding unit 431, an inverse-quantizing unit 432, a
coefficient buffer 433, an inverse-wavelet-transform unit 434,
and a line-block-image output unit 435.

By using a method corresponding to the encoding system
of the entropy encoding unit 127, the entropy decoding unit
431 performs entropy decoding on encoded data for each line
block, the encoded data being supplied from the MXF-file
decrypter 401, to generate coefficient data for each line block.
The entropy decoding unit 431 supplies the generated coef-
ficient data for each line block to the inverse-quantizing unit
432.

The inverse-quantizing unit 432 executes inverse-quanti-
zation processing, which corresponds to the quantization pro-
cessing performed by the quantizing unit 126, on the coeffi-
cient data supplied from the entropy decoding unit 431. The
inverse-quantizing unit 432 supplies the inverse-quantized
coefficient data to the coefficient buffer 433, which stores the
coefficient data.

The inverse-wavelet-transform unit 434 reads, from the
coefficient buffer 433, coefficient data to be inverse-wavelet-
transformed and performs inverse-wavelet-transform pro-
cessing on the coefficient data to generate decoded image
data, as appropriate. The inverse-wavelet-transform unit 434
supplies the generated decoded image data to the line-block-
image output unit 435.

The line-block-image output unit 435 holds the decoded
image data supplied from the inverse-wavelet-transform unit
434 and outputs, for each line block, the decoded image data
to outside of the image decoding apparatus 400. For example,
the decoded image data is supplied to a display unit (not
illustrated) so that a decoded image is displayed, is stored in
a recording medium (not illustrated), such as hard disk or a
semiconductor memory, or is supplied to an image processing
apparatus (not illustrated) so as to be subjected to arbitrary
image processing.

Asdescribed above, the line-block decoder 402 can decode
encoded data for each line block. Thus, the line-block decoder
402 can decode encoded data with lower delay to generate
decoded image data.

When the delay time increases excessively as a result of the
MXEF file decryption performed by the MXF-file decrypter
401, there is a possibility that the low-delay processing per-
formed by the line-block decoder 402 is wasted. However, the
MXF-file decrypter 401 can decrypt the MXF file to extract
encoded data without an excessive increase in the delay time,
as described above. That is, the MXF-file decrypter 401 can
perform processing so that the low-delay processing per-
formed by the line-block decoder 402 is not undesirably
inhibited.

Accordingly, the image decoding apparatus 400 can
achieve a higher degree of freedom and a lower delay with
respect to transmission of data, such as image and audio data.

10

15

20

25

30

35

40

45

50

55

60

65

28

[Flow of Decoding Processing]

Next, a description will be given of flows of the respective
processing executed by the image decoding apparatus 400 as
described above. First, an example of the flow of the decoding
processing executed by the image decoding apparatus 400
will be described with reference to a flowchart illustrated in
FIG. 28.

The image decoding apparatus 400 executes decoding pro-
cessing illustrated in FIG. 28, each time encoded data for one
picture is input.

When the decoding processing is started, in step S401, the
partition separating unit 411 obtains a transmitted MXF file
and decrypts the MXF file to separate the header partition, the
body partitions, and the footer partition.

In step S402, the header-partition decrypting unit 412
decrypts the header partition separated in step S401.

In step S403, the footer-partition decrypting unit 414
decrypts the footer partition separated in step S401.

In step S404, the body-partition decrypting unit 413
decrypts the body partitions separated in step S401.

When the individual partitions are decrypted as described
above, the process proceeds to step S405 in which the
essence-container-data decrypting unit 424 extracts a code
stream for one line block from the MXF file (the essence
container data).

In step S406, the line-block decoder 402 decodes the
encoded data for one line block, the encoded data being
extracted in step S405, to generate decoded image data for
one line block.

In step S407, the line-block-image output unit 435 outputs
the decoded image data for one line block, the decoded image
data being generated in the process in step S406, to outside of
the image decoding apparatus 400.

In step S408, the line-block-image output unit 435 deter-
mines whether or not all line blocks have been processed with
respect to the picture to be processed (the picture of interest).
When it is determined that an unprocessed line block exists
with respect to the picture of interest, the process returns to
step S401 in which the line-block-image output unit 435
repeats the subsequent processes. That is, the partition sepa-
rating unit 411 obtains a new MXF file and separates the
partitions thereof.

Thus, the image decoding apparatus 400 executes the pro-
cesses in steps S401 to S408 on each MXF file (each line
block). When it is determined in step S408 that all line blocks
of' the picture of interest have been processed, the line-block-
image output unit 435 that have output the decoded image
data of all line blocks of the picture of interest ends the
decoding processing.

[Flow of Footer-Partition Decryption Processing]

Next, an example of the flow of the footer-partition decryp-
tion processing executed in step S403 in FIG. 28 will be
described with reference to a flowchart illustrated in FIG. 29.

Upon start of the footer-partition decryption processing, in
step S421, the footer-partition decrypting unit 414 decrypts
the header metadata contained in the footer partition. In step
S422, the footer-partition decrypting unit 414 decrypts the
index table segment contained in the footer partition.

Upon completion of the process in step S422, the footer-
partition decrypting unit 414 ends the footer-partition decryp-
tion processing and the process returns to FIG. 28.

As illustrated in FIG. 13C, the footer partition contains no
redundant element, has a low-delay data structure, and has a
small number of elements. Thus, the footer-partition decrypt-
ing unit 414 can easily decrypt the footer partition as
described above.

US 9,064,294 B2

29

[Flow of Body-Partition Decryption Processing]

Next, an example of the flow of the body-partition decryp-
tion processing executed in step S404 in FIG. 28 will be
described with reference to a flowchart illustrated in FIG. 30.

Upon start of the body-partition decryption processing, in
step S441, the header-metadata decrypting unit 421 in the
body-partition decrypting unit 413 decrypts the header meta-
data contained in the third body portion.

In step S442, the index-table-segment decrypting unit 422
decrypts the index table segment contained in the second
body partition.

In step S443, the code-stream data-length decrypting unit
423 and the essence-container-data decrypting unit 424
decrypt KLV of the essence container data contained in the
first body partition.

Upon completion of the process in step S443, the essence-
container-data decrypting unit 424 ends the body-partition
decryption processing and the process returns to FIG. 28. As
illustrated in FIG. 135, the body partitions contain no redun-
dant element, have a low-delay data structure, and have a
small number of elements. Thus, the body-partition decrypt-
ing unit 413 can easily decrypt the body partition as described
above.

[Flow of Line-Block Decoding Processing]

Next, an example of the flow of the line-block decoding
processing executed in step S406 in FIG. 28 will be described
with reference to a flowchart illustrated in FIG. 31.

Upon start of the line-block decoding processing, in step
S461, the entropy decoding unit 431 performs entropy decod-
ing on the encoded data for one line block, the encoded data
being extracted from the MXF file by the MXF-file decrypter
401, by using a method corresponding to the encoding system
of'the encoding performed by the entropy encoding unit 127.

In step S462, by using a method corresponding to the
quantization performed by the quantizing unit 126, the
inverse-quantizing unit 432 performs inverse quantization on
coefficient data generated by performing entropy decoding on
the encoded data in the process in step S461.

Instep S463, the coefficient buffer 433 holds the coefficient
data inverse-quantized in step S462.

In step S464, the coefficient buffer 433 determines whether
or not coefficient data for one line block are accumulated.
When the coefficient buffer 433 determines that coefficient
data for one line block is not accumulated, i.e., is not entropy-
decoded, the process returns to step S461.

The processes in steps S461 to S464 are repeatedly
executed. When the coefficient buffer 433 determines in step
S464 that coefficient data for one line block is accumulated,
the process proceeds to step S465.

In step S465, the inverse-wavelet-transform unit 434 reads
the coefficient data for one line block, the coefficient data
being stored in the coefficient buffer 433, and performs ver-
tical synthesis filtering, which performs synthesis filter pro-
cessing in the vertical direction, on the read coefficient data.
As a result, high-frequency components and low-frequency
components decomposed in the vertical direction are com-
bined together.

In step S466, the inverse-wavelet-transform unit 434 per-
forms horizontal synthesis filtering, which performs synthe-
sis filter processing in the horizontal direction, on the result of
the process in step S465. As a result, high-frequency compo-
nents and low-frequency components decomposed in the
horizontal direction are combined together.

In step S467, the inverse-wavelet-transform unit 434 deter-
mines whether or not the synthesis filtering has been per-

10

15

20

25

30

35

40

45

50

55

60

65

30

formed up to level 1. Upon determining that the synthesis
processing has not been performed up to level 1, the process
returns to step S465.

That is, with respect to all decomposition levels, the
inverse-wavelet-transform unit 434 performs vertical synthe-
sis filtering and horizontal synthesis filtering to generate
decoded image data.

In step S467, upon determining that the filtering has been
performed up to level 1, the inverse-wavelet-transform unit
434 ends the line-block decoding processing and the process
returns to FIG. 28.

As a result of execution of the processes as described
above, the MXF-file decrypter 401 can extract encoded data
for each line block from the MXF file, without an increase in
the delay time. The line-block decoder 402 can also decode
the encoded data for each line block and can realize low-delay
decoding processing.

Accordingly, the image decoding apparatus 400 can
achieve a higher degree of freedom and a lower delay with
respect to transmission of data, such as image and audio data.
[Body Partition Omission]

As described above in the first embodiment, the image
encoding apparatus 100 may be configured so that the third
body partition (i.e., the body partition containing the header
metadata) is omitted (is not added), the last body partition is
used as the second body partition (i.e., the body partition
containing the index table segment), and instead the informa-
tion of the header metadata that is omitted (that is not added)
is contained in the header metadata contained in the footer
partition.

In this case, the decoding processing, the footer partition
processing, and the line-block decoding processing are
executed as in the case described above.

The body-partition decryption processing, however is
executed as described below.

[Flow of Body-Partition Decryption Processing]

An example of the flow of the body-partition decryption
processing in this case will now be described with reference
to a flowchart illustrated in FIG. 32.

Upon start of the body-partition decryption processing, in
step S481, the header-metadata decrypting unit 421 in the
body-partition decrypting unit 413 refers to the result of the
decryption of the header metadata of the footer partition (i.e.,
the result of the process in step S421), since the body partition
containing the header metadata is omitted.

In step S482, the index-table-segment decrypting unit 422
decrypts the index table segment contained in the second
body partition.

In step S483, the code-stream data-length decrypting unit
423 and the essence-container-data decrypting unit 424
decrypt KLV of the essence container data contained in the
first body partition.

Upon completion of the processing in step S483, the
essence-container-data decrypting unit 424 ends the body-
partition decryption processing and the process returns to
FIG. 28. Thus, when the body partition containing the header
metadata is omitted, the image decoding apparatus 400 can
also extract the decoded data from the MXF file to decode the
encoded data. That is, the image decoding apparatus 400 can
reduce the amount of information of the MXF file.

[Body Partition Omission 2]

As described above in the first embodiment, the image
encoding apparatus 100 may be configured so that not only
the third body partition (i.e., the body partition containing the
header metadata) but also the second body partition (i.e., the
body partition containing the index table segment) is omitted
(i.e.,1s not added) and instead the pieces of information of the

US 9,064,294 B2

31

header metadata and the index table segment that are omitted
(that are not added) are contained in the corresponding header
metadata and index table segment contained in the footer
partition.

In this case, the decoding processing, the footer partition
processing, and the line-block decoding processing are
executed as in the case described above.

The body-partition decryption processing, however is
executed as described below.

[Flow of Body-Partition Decryption Processing]

An example of the flow of the body-partition decryption
processing in this case will now be described with reference
to a flowchart illustrated in FIG. 33.

Upon start of the body-partition decryption processing, in
step S501, the header-metadata decrypting unit 421 in the
body-partition decrypting unit 413 refers to the result of the
decryption of the header metadata of the footer partition (i.e.,
the result of the process in step S421), since the body partition
containing the header metadata is omitted.

In step S502, the index-table-segment decrypting unit 422
refers to the result of the decryption of the index table segment
of the footer partition (i.e., the result of the process in step
S422), since the body partition containing the index table
segment is omitted.

In step S503, the code-stream data-length decrypting unit
423 and the essence-container-data decrypting unit 424
decrypt KLV of the essence container data contained in the
first body partition.

Upon completion of the process in step S503, the essence-
container-data decrypting unit 424 ends the body-partition
decryption processing and the process returns to FIG. 28.
Thus, when not only the body partition containing the header
metadata but also the body partition containing the index
table segment is omitted, the image decoding apparatus 400
can also extract the decoded data from the MXF file to decode
the encoded data. That is, the image decoding apparatus 400
can further reduce the amount of information of the MXF file.
[MXF File Containing Multiple Line Blocks]

As described above in the first embodiment, the image
encoding apparatus 100 can also wrap encoded data for mul-
tiple line blocks into one MXF file.

In this case, the decoding processing is executed as
described below.

[Flow of Decoding Processing]

An example of the flow of decoding processing when
encoded data for multiple line blocks is wrapped into one
MXF file will now be described with reference to a flowchart
illustrated in FIG. 34.

Itis assumed in this case that encoded data for N line blocks
(N is an integer greater than or equal to 2) is wrapped into one
MXF file.

When the decoding processing is started, in step S521, the
partition separating unit 411 obtains a transmitted MXF file
and decrypts the MXF file to separate the header partition, the
body partitions, and the footer partition.

In step S522, the header-partition decrypting unit 412
decrypts the header partition separated in step S531.

In step S523, the footer-partition decrypting unit 414
decrypts the footer partition separated in step S521. Details of
the footer-partition decryption processing are described
below.

In step S524, the body-partition decrypting unit 413
decrypts the body partitions separated in step S521. The
body-partition decryption processing is executed as in the
case described above with reference to the flowchart illus-
trated in FIG. 30.

10

15

20

25

30

35

40

45

50

55

60

65

32

In step S525, the essence-container-data decrypting unit
424 extracts a code stream for one line block from the MXF
file (the decrypted essence container data).

In step S526, the line-block decoder 402 decodes the
encoded data for one line block, the encoded data being
extracted in step S525, to generate decoded image data for
one line block. The line-block decoding processing is
executed as in the case described above with reference to the
flowchart illustrated in FIG. 31.

In step S527, the line-block-image output unit 435 outputs
the decoded image data for one line block, the decoded image
data being generated in the process in step S526, and outputs
the decoded image data to outside of the image decoding
apparatus 400.

In step S528, the line-block-image output unit 435 deter-
mines whether or not decoded data for N-1 line blocks has
been processed with respect to a picture to be processed (a
picture of interest). When the amount of the processed
encoded data has not reached N-1 line blocks, the process
returns to step S524 in which the line-block-image output unit
435 repeats the subsequent processes.

The processes in steps S524 to S528 are executed for each
line block. When the line-block-image output unit 435 deter-
mines in step S528 that coefficient data for N-1 line blocks
has been processed, the process proceeds to step S529.

The individual units in the image decoding apparatus 400
execute the processes in steps S529 to S532 on the body
partitions for the encoded data for the Nth line block, as in the
processes in steps S524 to S527.

In step S533, the line-block-image output unit 435 deter-
mines whether or not all line blocks have been processed with
respect to the picture to be processed (the picture of interest).
When an unprocessed line block exists with respect to the
picture of interest, the process returns to step S521 in which
the line-block-image output unit 435 repeats the subsequent
processes. That is, the partition separating unit 411 obtains a
new MXEF file and separates the partitions thereof.

Thus, the image decoding apparatus 400 executes the pro-
cesses in steps S521 to S533 on each MXF file (each line
block). When it is determined in step S533 that all line blocks
of' the picture of interest have been processed, the line-block-
image output unit 435 that have output the decoded image
data of all line blocks of the picture of interest ends the
decoding processing.

[Flow of Footer-Partition Decryption Processing]

Next, an example of the flow of the footer-partition decryp-
tion processing executed in step S523 in FIG. 34 will be
described with reference to a flowchart illustrated in FIG. 35.

Upon start of the footer-partition decryption processing, in
step S551, the footer-partition decrypting unit 414 decrypts
the header metadata contained in the footer partition. In step
S552, the footer-partition decrypting unit 414 decrypts all of
the index table segments for N line blocks, the index table
segments being contained in the footer partition.

Upon completion of the process in step S552, the footer-
partition decrypting unit 414 ends the footer-partition decryp-
tion processing and the process returns to FIG. 34.

As described above, when encoded data (a code stream) for
multiple line blocks is wrapped into one MXF file, the image
decoding apparatus 400 can also achieve a higher degree of
freedom and a lower delay with respect to transmission of
data, such as image and audio data.

As described above, when encoded data (a code stream) for
multiple line blocks is wrapped into one MXF file, the body
partition containing the header metadata may be omitted with
respect to only the encoded data for the Nth line block. In this
case, the body-partition decrypting unit 413 can execute the

US 9,064,294 B2

33

body-partition decryption processing in step S529, as in the
case described above with reference to the flowchart illus-
trated in FIG. 32.

As described above, when encoded data (a code stream) for
multiple line blocks is wrapped into one MXF file, the body
partition containing the header metadata and the body parti-
tion containing the index table segment may be omitted with
respect to only the encoded data for the Nth line block. In this
case, the body-partition decrypting unit 413 can execute the
body-partition decryption processing in step S529, as in the
case described above with reference to the flowchart illus-
trated in FIG. 33.

Thus, the image decoding apparatus 400 can reduce the
amount of information of the MXF file.

[Overview of Transmission of MXF File]

FIG. 36 depicts an operation involving line-block encoding
and MXF conversion at the transmission side and MXF
decryption and line-block decoding at the receiving side. For
HDTV video (1080@59.941), the time of one field is 16.7
msec. Thus, according to the present technology, the time
taken until encoding, decoding, and display of a first line
block are performed can be reduced to a time (indicated as 5
msec in FIG. 36) that is shorter than the time of one field.

Although a case in which the number of color components
is one has been described above, the number of components is
not limited thereto. For example, an input image may be
constituted by multiple color components, as in the case of
RGB and YCrCb. In this case, the generation of a quantization
table and a representative-value table, quantization process-
ing, and inverse-quantization processing may be performed
on each of the color components as in the case described
above. Those processes can be independently performed on
each color component. Thus, the processes on each color
component can be performed in parallel or can also be per-
formed at timings that are different from each other.

Needless to say, each apparatus described above may also
include an element other than those described above. For
example, each apparatus may be implemented as equipment
or a device using an image captured by an image capture
element (a CMOS (complementary metal-oxide semiconduc-
tor) or CCD (charge-coupled device) sensor), a compression
circuit used until an image captured by an image capture
element is written to a memory, a digital still camera, a video
camcorder, a medical image camera, a medical endoscope, a
surveillance camera a digital-cinema shooting camera, a bin-
ocular image camera, a multi-lens camera, a memory reduc-
ing circuit for an LSI chip, an authoring tool on a PC, a
software module therefore, or the like. Each apparatus may
also be implemented as not only a single apparatus but also a
system including multiple apparatuses.

3. Third Embodiment
Personal Computer

The above-described series of processes can be executed
by hardware or software. For example, the above-described
series of processes may be implemented by a personal com-
puter as illustrated in FIG. 37.

In FIG. 37, a personal computer 700 includes a CPU (cen-
tral processing u pit) 701, which executes various types of
processing in accordance with a program stored in a ROM
(read only memory) 702 or a program loaded from a storage
unit 713 to a RAM (random access memory) 703. For
example, data that the CPU 701 uses to execute the various
types of processing is also stored in the RAM 703, as appro-
priate.

15

35

40

45

50

55

34

The CPU 701, the ROM 702, and the RAM 703 are also
interconnected through a bus 704. The bus 704 is also con-
nected to an input/output interface 710.

An input unit 711, an output unit 712, a storage unit 713,
and a communication unit 714 are also connected to the
input/output interface 710. Examples of the input unit 711
include a keyboard and a mouse. Examples of the output unit
712 include a display, such as a CRT (cathode ray tube)
display or an LCD (liquid crystal display), and a speaker.
Examples of the storage unit 713 include an SSD (solid state
drive), such as a flash memory, and a hard disk. Examples of
the communication unit 714 include an interface and a
modem for a wired LAN (local area network) and a wireless
LAN. The communication unit 714 performs communication
processing through a network, including the Internet.

A drive 715 is also connected to the input/output interface
710, as appropriate, and a removable medium 721 is inserted
into the drive 715, and a computer program read therefrom is
installed to the storage unit 713, as appropriate. Examples of
the removable medium include a magnetic disk, an optical
disk, a magneto-optical disk, and a semiconductor memory.

When the above-described series of processing is executed
by software, a program provided by the software is installed
from the network to a recording medium.

For example, as illustrated in FIG. 37, the recording
medium may be not only the removable medium 721 on
which the program is recorded and which is distributed to a
user to supply the program independently from the main unit
of the apparatus, but also the ROM 702, the hard disk (in-
cluded in the storage unit 713), or the like in which the
program is recorded and which is distributed to a user while
being pre-incorporated into the main unit of the apparatus.
Examples of the removable medium 721 include a magnetic
disk (such as a flexible disk), an optical disk (such as a
CD-ROM (compact disc-read only memory) or DVD (digital
versatile disc)), a magneto-optical disk (such as an MD (Mini
Disc)), or a semiconductor memory.

The program executed by the computer may be a program
that time-sequentially performs processes according to the
order described hereinabove, may be a program that performs
processes in parallel, or may be a program that performs
processes at an arbitrary timing, for example, at the time of
call of the program.

Herein, the steps describing the program recorded to the
storage medium not only include processes that are time-
sequentially performed according to the described order, but
also include processes that are concurrently or individually
executed without being time-sequentially processed.

The term “system” as used herein refers to an entirety
constituted by multiple devices (apparatuses).

The configuration described above as being constituted by
a single apparatus (or a single processor) may also be config-
ured as multiple devices (or processors). The configuration
described above as being constituted by multiple apparatuses
(or processors) may also be integrated together to constitute
one apparatus (or a processor). Needless to say, an element
other than those described above may also be added to the
configuration of each apparatus (or processor). Moreover,
when the configuration and the operation of the entire system
are substantially the same, part of the configuration of one
apparatus (or processor) may be incorporated into the con-
figuration of another apparatus (or processor). That is,
embodiments according to the present disclosure are not lim-
ited to the above-described embodiments and various
changes and modifications can be made thereto without
departing from the spirit and scope of the present disclosure.

US 9,064,294 B2

35

The present technology may have a configuration as
described below.

(1) An image processing apparatus that processes encoded
data obtained by encoding image data for each of line blocks
obtained by dividing an image, the image processing appara-
tus including:

a body-partition generating unit configured to generate
body partitions of a file with a predetermined format for
each piece of encoded data for one of the line blocks, the
body partitions containing the encoded data; and

a partition merging unit configured to merge the body
partitions generated by the body-partition generating
unit, a header partition containing header information,
and a footer partition containing footer information to
thereby generate the file.

(2) The image processing apparatus according to (1),
wherein the body-partition generating unit generates one
body partition containing the encoded data with respect to the
file so as to wrap the encoded data for one line block into the
file.

(3) The image processing apparatus according to (2),
wherein the body-partition generating unit generates a body
partition containing the encoded data, a body partition con-
taining an index table segment, and a body partition contain-
ing header metadata in that order and arranges the body
partitions in that order.

(4) The image processing apparatus according to (2), fur-
ther including a footer-partition generating unit configured to
generate the footer partition,

wherein the body-partition generating unit generates a
body partition containing the encoded data and a body
partition containing an index table segment in that order
and arranges the body partitions in that order, and

the footer-partition generating unit generates a footer par-
tition containing header metadata.

(5) The image processing apparatus according to (2), fur-
ther including a footer-partition generating unit configured to
generate the footer partition,

wherein the body-partition generating unit generates a
body partition containing the encoded data, and

the footer-partition generating unit generates a footer par-
tition containing header metadata and an index table
segment.

(6) The image processing apparatus according to (1),
wherein the body-partition generating unit generates body
partitions containing the encoded data with respect to the file
and arranges the body partitions so that the encoded data for
the line blocks is wrapped into the file.

(7) The image processing apparatus according to (6),
wherein the body-partition generating unit generates, for
each line block, a body partition containing the encoded data,
a body partition containing an index table segment, and a
body partition containing header metadata in that order and
arranges the body partitions in that order.

(8) The image processing apparatus according to (6), fur-
ther including a footer-partition generating unit configured to
generate the footer partition,

wherein, with respect to each line block except a last one of
the line blocks, the body-partition generating unit gen-
erates a body partition containing the encoded data, a
body partition containing an index table segment, and a
body partition containing header metadata in that order
and arranges the body partitions in that order;

with respect to the last line block, the body-partition gen-
erating unit generates a body partition containing the

5

15

20

30

40

45

55

36

encoded data and a body partition containing the index
table segment in that order and arranges the body parti-
tions in that order; and

the footer-partition generating unit generates a footer par-

tition containing header metadata of the last line block.

(9) The image processing apparatus according to (6), fur-
ther including a footer-partition generating unit configured to
generate the footer partition,

wherein, with respect to each line block except a last one of

the line blocks, the body-partition generating unit gen-
erates a body partition containing the encoded data, a
body partition containing an index table segment, and a
body partition containing header metadata in that order
and arranges the body partitions in that order;

with respect to the last line block, the body-partition gen-

erating unit generates a body partition containing the
encoded data; and

the footer-partition generating unit generates a footer par-

tition containing header metadata and an index table
segment of the last line block.

(10) The image processing apparatus according to one of
(1) to (9), further including an encoder configured to encode
the image data for each line block,

wherein the body-partition generating unit generates the

body partitions containing encoded data obtained by
encoding the image data for each line block, the encod-
ing being performed by the encoder.

(11) The image processing apparatus according to (10),
wherein the encoder includes:

a wavelet-transform unit configured to perform wavelet

transform on the image data for each line block; and
an entropy encoding unit configured to perform entropy

encoding on coefficient data obtained by the wavelet

transform performed by the wavelet-transform unit.

(12) The image processing apparatus according to (11),
wherein the line block is a pixel data group for a number of
lines that the wavelet-transform unit uses to generate coeffi-
cient data for one line of a subband of lowest-frequency
components after the wavelet transform.

(13) The image processing apparatus according to one of
(1) to (12), wherein the predetermined format is an MXF
according to an SMPTE standard.

(14) An image processing method for an image processing
apparatus that processes encoded data obtained by encoding
image data for each of line blocks obtained by dividing an
image, the image processing method including:

causing a body-partition generating unit to generate body

partitions of a file with a predetermined format for each
piece of encoded data for one of the line blocks, the body
partitions containing the encoded data; and

causing a partition merging unit to merge the generated

body partitions, a header partition containing header
information, and a footer partition containing footer
information to thereby generate the file.

(15) An image processing apparatus that processes
encoded data obtained by encoding image data, the image
processing apparatus including:

a partition separating unit configured to separate the

encoded data into partitions including body partitions of
a file in a predetermined format, the body partitions
containing the encoded data for one of line blocks
obtained by dividing an image; and

a body-partition decrypting unit configured to decrypt the

body partitions to extract the encoded data for the line
block, the body partitions being separated by the parti-
tion separating unit.

US 9,064,294 B2

37

(16) The image processing apparatus according to (15),
wherein the body-partition decrypting unit further decrypts a
body partition containing an index table segment and a body
partition containing header metadata, the body partitions
being separated by the partition separating unit.

(17) The image processing apparatus according to (15),
further including a decoder configured to decode the encoded
data for one line block, the encoded data being decrypted and
extracted by the body-partition decrypting unit.

(18) The image processing apparatus according to (17),
wherein the decoder includes:

an entropy decoding unit configured to perform entropy

decoding on the encoded data to generate coefficient
data; and

an inverse-wavelet-transform unit configured to perform

inverse wavelet transform on the coefficient data gener-
ated by the decoding performed by the entropy decoding
unit.

(19) The image processing apparatus according to one of
(15) to (18), wherein the predetermined format is an MXF
according to an SMPTE standard.

(20) An image processing method for an image processing
apparatus that processes encoded data obtained by encoding
image data, the image processing method including:

causing a partition separating unit to separate the encoded

data into partitions including body partitions of a file in
a predetermined format, the body partitions containing
the encoded data for one of line blocks obtained by
dividing an image; and

a body-partition decrypting unit configured to decrypt the

separated body partitions to extract the encoded data for
the line block.

The present disclosure contains subject matter related to
that disclosed in Japanese Priority Patent Application JP
2011-267561 filed in the Japan Patent Office on Dec. 7,2011,
the entire contents of which are hereby incorporated by ref-
erence.

It should be understood by those skilled in the art that
various modifications, combinations, sub-combinations and
alterations may occur depending on design requirements and
other factors insofar as they are within the scope of the
appended claims or the equivalents thereof.

What is claimed is:

1. An image processing apparatus that processes encoded
data obtained by encoding image data for each of line blocks
obtained by dividing an image, the image processing appara-
tus comprising:

a body-partition generating unit configured to generate
body partitions of a file with a predetermined format for
each piece of encoded data for one of the line blocks, the
body partitions containing the encoded data, wherein
one line block corresponds to coefficient data for one
line of a subband of lowest frequency components; and

a partition merging unit configured to merge the body
partitions generated by the body-partition generating
unit, a header partition containing header information,
and a footer partition containing footer information to
thereby generate the file.

2. The image processing apparatus according to claim 1,
wherein the body-partition generating unit generates one
body partition containing the encoded data with respect to the
file so as to wrap the encoded data for one line block into the
file.

3. The image processing apparatus according to claim 2,
wherein the body-partition generating unit generates a body
partition containing the encoded data, a body partition con-

30

35

40

45

50

60

65

38

taining an index table segment, and a body partition contain-
ing header metadata in that order and arranges the body
partitions in that order.

4. The image processing apparatus according to claim 2,
further comprising a footer-partition generating unit config-
ured to generate the footer partition,

wherein the body-partition generating unit generates a

body partition containing the encoded data and a body
partition containing an index table segment in that order
and arranges the body partitions in that order, and

the footer-partition generating unit generates a footer par-

tition containing header metadata.

5. The image processing apparatus according to claim 2,
further comprising a footer-partition generating unit config-
ured to generate the footer partition,

wherein the body-partition generating unit generates a

body partition containing the encoded data, and

the footer-partition generating unit generates a footer par-

tition containing header metadata and an index table
segment.

6. The image processing apparatus according to claim 1,
wherein the body-partition generating unit generates body
partitions containing the encoded data with respect to the file
and arranges the body partitions so that the encoded data for
the line blocks is wrapped into the file.

7. The image processing apparatus according to claim 6,
wherein the body-partition generating unit generates, for
each line block, a body partition containing the encoded data,
a body partition containing an index table segment, and a
body partition containing header metadata in that order and
arranges the body partitions in that order.

8. The image processing apparatus according to claim 6,
further comprising a footer-partition generating unit config-
ured to generate the footer partition,

wherein, with respect to each line block except a last one of

the line blocks, the body-partition generating unit gen-
erates a body partition containing the encoded data, a
body partition containing an index table segment, and a
body partition containing header metadata in that order
and arranges the body partitions in that order;

with respect to the last line block, the body-partition gen-

erating unit generates a body partition containing the
encoded data and a body partition containing the index
table segment in that order and arranges the body parti-
tions in that order; and

the footer-partition generating unit generates a footer par-

tition containing header metadata of the last line block.

9. The image processing apparatus according to claim 6,
further comprising a footer-partition generating unit config-
ured to generate the footer partition,

wherein, with respect to each line block except a last one of

the line blocks, the body-partition generating unit gen-
erates a body partition containing the encoded data, a
body partition containing an index table segment, and a
body partition containing header metadata in that order
and arranges the body partitions in that order;

with respect to the last line block, the body-partition gen-

erating unit generates a body partition containing the
encoded data; and

the footer-partition generating unit generates a footer par-

tition containing header metadata and an index table
segment of the last line block.

10. The image processing apparatus according to claim 1,
further comprising an encoder configured to encode the
image data for each line block,

wherein the body-partition generating unit generates the

body partitions containing encoded data obtained by

US 9,064,294 B2

39

encoding the image data for each line block, the encod-
ing being performed by the encoder.

11. The image processing apparatus according to claim 10,
wherein the encoder comprises:

a wavelet-transform unit configured to perform wavelet

transform on the image data for each line block; and
an entropy encoding unit configured to perform entropy

encoding on coefficient data obtained by the wavelet

transform performed by the wavelet-transform unit.

12. The image processing apparatus according to claim 11,
wherein the line block is a pixel data group for a number of
lines that the wavelet-transform unit uses to generate coeffi-
cient data for one line of a subband of lowest-frequency
components after the wavelet transform.

13. The image processing apparatus according to claim 1,
wherein the predetermined format is an MXF according to an
SMPTE standard.

14. An image processing method for an image processing
apparatus that processes encoded data obtained by encoding
image data for each of line blocks obtained by dividing an
image, the image processing method comprising:

causing, by circuitry, a body-partition generating unit to

generate body partitions of a file with a predetermined
format for each piece of encoded data for one of the line
blocks, the body partitions containing the encoded data,
wherein one line block corresponds to coefficient data
for one line of a subband of lowest frequency compo-
nents; and

causing, by circuitry, a partition merging unit to merge the

generated body partitions, a header partition containing
header information, and a footer partition containing
footer information to thereby generate the file.

15. An image processing apparatus that processes encoded
data obtained by encoding image data, the image processing
apparatus comprising:

a partition separating unit configured to separate the

encoded data into partitions including body partitions of
a file in a predetermined format, the body partitions
containing the encoded data for one of line blocks
obtained by dividing an image, wherein one line block
corresponds to coefficient data for one line of a subband
of'lowest frequency components; and

a body-partition decrypting unit configured to decrypt the

body partitions to extract the encoded data for the line
block, the body partitions being separated by the parti-
tion separating unit.

16. The image processing apparatus according to claim 15,
wherein the body-partition decrypting unit further decrypts a
body partition containing an index table segment and a body
partition containing header metadata, the body partitions
being separated by the partition separating unit.

17. The image processing apparatus according to claim 15,
further comprising a decoder configured to decode the
encoded data for one line block, the encoded data being
decrypted and extracted by the body-partition decrypting
unit.

18. The image processing apparatus according to claim 17,
wherein the decoder comprises:

an entropy decoding unit configured to perform entropy

decoding on the encoded data to generate coefficient
data; and

an inverse-wavelet-transform unit configured to perform

inverse wavelet transform on the coefficient data gener-
ated by the decoding performed by the entropy decoding
unit.

5

10

20

30

35

40

45

50

55

[
<

40

19. The image processing apparatus according to claim 15,
wherein the predetermined format is an MXF according to an
SMPTE standard.

20. An image processing method for an image processing
apparatus that processes encoded data obtained by encoding
image data, the image processing method comprising:

causing, by hardware, a partition separating unit to sepa-
rate the encoded data into partitions including body par-
titions of a file in a predetermined format, the body
partitions containing the encoded data for one of line
blocks obtained by dividing an image, wherein one line
block corresponds to coefficient data for one line of a
subband of lowest frequency components; and

decrypting the separated body partitions to extract the
encoded data for the line block.

21. An image processing apparatus that processes encoded
data obtained by encoding image data for each of line blocks
obtained by dividing an image, the image processing appara-
tus comprising:

a body-partition generating unit configured to generate
body partitions of a file with a predetermined format for
each piece of encoded data for one of the line Mocks, the
body partitions containing the encoded data, wherein the
body-partition generating unit generates a body parti-
tion containing the encoded data, a body partition con-
taining an index table segment, and a body partition
containing header metadata in that order and arranges
the body partitions in that order; and

a partition merging unit configured to merge the body
partitions generated by the body-partition generating
unit, a header partition containing header information,
and a footer partition containing footer information to
thereby generate the file.

22. An image processing method for an image processing
apparatus that processes encoded data obtained by encoding
image data for each of line blocks obtained by dividing an
image, the image processing method comprising:

causing, by circuitry, a body-partition generating unit to
generate body partitions of a file with a predetermined
format for each piece of encoded data for one of the line
blocks, the body partitions containing the encoded data,
wherein the body-partition generating unit generates a
body partition containing the encoded data, a body par-
tition containing an index table segment, and a body
partition containing header metadata in that order and
arranges the body partitions in that order; and

causing, by circuitry, a partition merging unit to merge the
generated body partitions, a header partition containing
header information, and a footer partition containing
footer information to thereby generate the file.

23. An image processing apparatus that processes encoded
data obtained by encoding image data, the image processing
apparatus comprising:

a partition separating unit configured to separate the

encoded data into partitions including body partitions of
a file in a predetermined format, the body partitions
containing the encoded data for one of line blocks
obtained by dividing an image, and

a body-partition decrypting unit configured to decrypt the
body partitions to extract the encoded data for the line
block, the body partitions being separated by the parti-
tion separating unit, wherein the body-partition decrypt-
ing unit further decrypts a body partition containing an
index table segment and a body partition containing
header metadata, the body partitions being separated by
the partition separating unit.

US 9,064,294 B2

41

24. An image processing method for an image processing
apparatus that processes encoded data obtained by encoding
image data, the image processing method comprising:

causing, by hardware, a partition separating unit to sepa-

rate the encoded data into partitions including body par-
titions of a file in a predetermined format, the body
partitions containing the encoded data for one of line
blocks obtained by dividing an image, and

decrypting the separated body partitions to extract the

encoded data for the line block including further
decrypting a body partition containing an index table
segment and a body partition containing header meta-
data, the body partitions being separated by the partition
separating unit.

10

15

42

